

August 2011: Proposal Submitted Jointly by ACFHP, SARP, and EBTJV

October 2011: Received letter from AFWA noting that the proposal could be funded for one year at a reduced amount

Mid to late December 2011: Will receive notification from USFWS if we've been selected for funding.

Collectively advance each partnership's habitat assessments through identification of mutual data needs, data acquisition and landscape-level-analysis techniques for the benefit of fish, mussels, and other aquatic animals.

Assist the National Fish Habitat Science and Data Committee in improving the 2015 status report by filling major data gaps with regional-specific fish population, habitat, and human impact monitoring data. Coordinate ACFHP, SARP, and EBTJV partner engagement and outreach activities to strengthen and expand an already robust base of on-the-ground conservation partners. Assess the structure and function of the three FHPs and identify and implement strategies to enhance their organizational capacity.

Sub-objective 2.1: Develop and implement a streamlined communications strategy and outreach products for the three Eastern U.S. Fish Habitat Partnerships that highlights both synergies and distinguishing characteristics across the individual FHPs, and identifies FHP needs that would be best served individually and those that would benefit from a collective message.

Sub-objective 2.2: Assess the structure and function of the three FHPs; identity strengths and weaknesses with current delivery of the FHPs; and provide recommendations to enhance the effectiveness and capacity of the FHPs to achieve their missions and goals.

Sub-objective 2.3: Build sufficient organizational capacity within and across the three Eastern U.S. Fish Habitat Partnerships to fully implement the Sustainable FHP Program and Plan (i.e. Sub-objective 2.2)

Retain and enhance critical capacity to implement each of the individual FHP's Partnership Strategic Plans by facilitating completion of prioritized, on-the-ground, partner-led fish habitat conservation projects that achieve measurable results towards National Fish Habitat Action Plan goals and interim strategies and are easily communicated and understood. **Sub-objective 3.1:** Support regular meetings of the individual FHPs to engage with partners, identify opportunities to implement the FHP Strategic Plans, and prioritize actions toward protection and restoring function of eastern aquatic habitats.

Sub-objective 3.2: Enhanced capacity of the ACFHP, EBTJV, and SARP to implement design, construction, and monitoring phases of on-the-ground aquatic habitat conservation projects and aquatic habitat education efforts. **Sub-objective 3.3:** By December 31, 2013, develop and implement a consistent mechanism for evaluating and reporting the benefits of fish habitat conservation projects to a wide range of audiences by monitoring region-specific variable(s) that will inform and add to the National Fish Habitat Action Plan tracking effort.

- Outputs/Milestones (Most of which are time-bound)
- Outcomes
- Measures

- If funding is only available for 2012, ASMFC would accept the grant award, with the understanding that the scope of objectives would be reduced. Note full operational support for the three FHPs will require supplemental funding from sources other than MSCGP.
- Funds will be split among each of the three eastern Partnerships in accordance with unmet needs and other available partner support.

• By June 30, 2012, regular webinar meetings of the Science and Data Committees of the three FHPs will be established to enable them to share, identify and assemble existing data pertaining to threats to fish habitats.

• By December 31, 2012, develop a written list of action items resulting from the joint Science and Data Committee webinars that will be the focus of the efforts of the committees.

• By December 31, 2013, produce refined conservation focus area maps and list of priority criteria for each FHP based on latest habitat assessment information and best available data.

• By March 30, 2013, the FHPs will actively contribute data and participate in the development and refinement of the National Fish Habitat Assessment (coastal and freshwater) and Decision Support tools.

- By December 31, 2013, the FHPs and LCCs will collaboratively develop effective methods of collecting, compiling, and managing regional fish population and aquatic habitat data that will provide a platform to
 - 1) advance knowledge of fish population ecology and habitat relationships,
 - 2) develop consistent decision support tools for aquatic habitat restoration and conservation actions, and
 - 3) evaluate and improve the effectiveness and efficiency of FHPs and habitat conservation actions regionally.

• Starting within three months of project approval and continuing throughout the project period, joint FHP Communications and Outreach meetings will be held quarterly via conference call and/or WebEx with coordinators and/or appointed staff from the partner FHPs to provide regular, focused coordination of overall communications and outreach efforts.

- By June 31, 2012, develop individual FHP and joint messaging strategies that would identify key target audiences and generate core messages for members of the partnerships to communicate clearly and consistently with those audiences.
- By December 31, 2012, develop content for and the design of an "Implementing the NFHAP from Whitewater to Bluewater" program web page and Facebook page

- By June 31, 2013 and continuing on a semi-annual timeframe, develop and send to partners, legislators, state and federal agencies a "Whitewater to Bluewater" electronic update or newsletter that highlights the work being conducted by the Eastern FHPs
- A representative from each FHP will attend at least one conference or other meetings to give presentations/updates either individually or jointly where possible, to various conservation audiences, to inform attendees of FHP purpose and activities, and gain support.

• Throughout the project period, FHPs will maintain their individual websites and outreach materials (e.g. fact sheets, feature article(s) in partner newsletters and other available outlets, existing social networking tools, etc.) that will be dovetailed, where appropriate, with the other Eastern FHPs resources and efforts.

- ACFHP, EBTJV, & SARP develop Terms of Reference (ToR) or Request for Proposals (RFP) for services to evaluate the structure and function of the three FHPs and make recommendations to improve their organizational capacity by October 1, 2011.
- The FHPs select a qualified applicant by January 1, 2012.

- FHPs in collaboration with the successful applicant complete a review of the FHPs external/internal environment and the past performance to create a detailed understanding of current strategic position and organizational capacity by April 1, 2012.
- Based on the capacity assessment, the FHPs develop Sustainable FHP Plans, outlining organizational capacity objectives and begin to implement those plans by December 31, 2012.

- Each of the FHPs will designate member(s) to serve as part of a collaborative organizational capacity network.
- The successful applicant (noted in Objective 2.2) will host one training workshop with approximately three preworkshop webinars. FHP representatives will prepare/complete homework assignments in preparation for the workshop/webinars, which will train these individuals to begin implementing their Sustainable FHP Plan by October 1, 2013.

- By June 30, 2012, an EBTJV coordinator is hired and effectively working with the EBTJV Committees and partners;
- By March 31, 2013, hold at least one all-partner joint meeting of the ACFHP, EBTJV, and SARP to facilitate inter-FHP exchange of successes and challenges and foster "Whitewater to Bluewater" collaboration;

- By December 31, 2013, hold one all-partner meeting each for ACFHP, EBTJV, and SARP to review progress toward objectives and update strategic plans;
- By December 31, 2013, updated strategic or implementation plans are available for ACFHP, EBTJV, and SARP

- Each FHP will fund three or more on-the-ground and at least one communication/ outreach project annually;
- By December 31, 2013, ACFHP, EBTJV, and SARP have implemented strategies to improve delivery of FHP as identified in Objective 2

- By September 30, 2012, identify and vet among the science and data partners for ACFHP, EBTJV, and SARP potential monitoring / reporting measures that may serve to track progress of FHPs, including consideration of current measures used to report accomplishments achieved with existing federal NFHAP funds.
- By March 1, 2013, evaluate candidate measures and select measures for implementation

- By June 30, 2013, incorporate selected measures as part of all project evaluation and reporting and report on these measures for previously-implemented projects
- By December 31, 2013, evaluate the effectiveness of these measures and report on the compilation of these measures for the "Whitewater to Bluewater" collaboration

Sustaining Fisheries and Human Communities: Refining the Vision of the National Fish Habitat Action Plan: ACFHP Summary

Paul Pajak, U.S. Fish and Wildlife Service, Hadley, MA Andrea C. Ostroff, U.S. Geological Survey, Reston, VA

National Fish Habitat Action Plan MISSION

"...to protect, restore and enhance the nation's <u>fish and</u> <u>aquatic communities</u> through partnerships that foster fish habitat conservation and improve the <u>quality of life</u> for the American people."

Symposium Objectives:

- 1) Assess progress toward 2006 NFHAP goals
- 2) Examine scientific efficacy of 2010 national habitat condition analysis and status report
- 3) Explore efforts of FHPs to build on and contribute to a nationally integrated approach
- 4) Review major limiting factors to sustainable fisheries in North America and implications for the NFHAP
- 5) Provide insights to update 2011 Action Plan

Where are we?

ASSESSMENT

NFHAP Objectives: 2011 PROGRESS

- National habitat condition analysis
- ✓ Priority fish habitats identified
- ✓ 17 Fish Habitat Partnerships
- "Status of Fish Habitats in the U.S." report
- 5) **Protect all** healthy and intact fish habitats by 2015?
- 6) Improve the condition of 90% of priority habitats and species targeted by Fish Habitat Partnerships by 2020?

Where should we go?

PLANNING

"BIG PICTURE" REMINDER: The "Case for Action" in 2006

"Healthy waterways and robust fish populations are vital to the well-being of our society. They provide clean water and sustainable fisheries. They also are vital for less tangible reasons ..."

Symposium questions & insights ...

SCIENTIFIC EFFICACY? National Assessment & Reporting

۲

- Not one, but five methods; driven by data availability; AK & HI separate
- Underestimates degradation in some areas
- Need to relate ecological process variables to fish & habitat conditions
- Need additional data & coverage (e.g. NHD+, fish, AK, etc.)
- Improve public access & understanding for decision-making

Regional Fish Habitat Partnerships NATIONALLY INTEGRATED APPROACH?

- Differences in species/habitat focus;
 & data availability, quality & methods
- Need agreed upon variables and sampling, data acquisition strategies

- Need greater investment in information science to:
 - bridge local & national assessments
 - improve data sharing & link assets
 - reduce duplicate efforts & costs
 - enhance coordination & targeted implementation
- Need to quantify & validate relationships between inland, estuarine & coastal assessments

Factors Limiting SUSTAINABLE FISHERIES?

•

Sustainable Management of North American Fisheries

- Habitat loss, alteration & degradation
- Invasive species
- Over-exploitation
- Urbanization (landscapes & human values)
- Competing social priorities
- Inadequate decision support
 - Climate change

How do we get there?

IMPLEMENTATION

SUSTAINABILITY: A Comprehensive & Unifying Goal?

"...to meet the <u>needs</u> of the present generation without compromising the ability of future generations to meet their own needs."

Brundtland Commission 1987

??? ENVIRONMENT, FISH ???

FISH & HUMAN ACTIVITY

"Beginning with New England's first mill dams, ... <u>virtually every</u> <u>human activity</u> in New England has <u>affected brook trout</u> habitat."

Trout Unlimited 2004

The New England Brook Trout: Protecting a Fish, Restoring a Region

> Invasive Species
 > Water Supply

> Sprawl

> Forest Loss

> Air Quality

SUSTAINABILITY? Strategic Role of Fisheries Professionals & the NFHAP?

"Rivers are the lifelines of a continent, reflecting the condition of the surrounding landscape..." James R. Karr

Did we make it?

EVALUATION & ADAPTATION

MANY ASSESSMENTS !?!

Sustainability-Based "Report Cards"

0%

100%

chemical cycling

Executive Order 13508

Strategy for

Protecting and Restoring the Chesapeake Bay Watershed

Sustainability "Gap Analysis"

						Ì				Communication	Information	Ì
	EBM Domain			Element	CBP Goal	State Indicators	Monitoring	Assessment	Research	Products	Management	Model/Forecast
bility	Ecological	Diversity & Productivity	Biodiversity	Fish/Shellfish								
				Abundance Fish/Shellfish Diversity								
				Tistivoneniisti Diversity								
				Fish/Shellfish Health								
				Phytoplankton/								
				Zooplankton								
				Wildlife Abundance								
				Wildlife Diversity								
				Wildlife Health								
			Habitat	Wetlands								
				SAV								
				Fish Passage &								
			Land Use	Impervious Surface								
				Forest								
				Agriculture								
		Chemical Cycling	Water Quality	Nutrients								
				Sediments								
				Toxic pollutants								
			Air Quality	Particulates								
				Ozone								
				CO2								
				Acidity								
Ja			Geochemical Processes									
Sustaiı		Natural Disturbance	Climate Variability	Sea Level								
				water remperature								
				Salinity								
				Rainfall								
			Episodic events	Fire								
				Humcanes/ Storms								
				Flood								
				Tides								
				Streamflow/Drought								
	Societal	Physical Well-being	Human health	Water supply and								
				protection								
				Food Safety								
			Safety and Security	Swimable waters								
		Socioeconmomic well- being	Sense of Community	Public Access								
				Cultural Heritage								
			Quality of Life	Education								
				security								
				Social & economic value								
	Institutional	Objective assessment	Sound Science									
		Consent-based	Partnerships, NEPA	Community Engagement								
		Results-oriented	Shared vision	Accountable								
		Adaptable										

2011 Action Plan Update: RECOMMENDATIONS

- Ensure scientifically valid, standardized & integrated ASSESSMENTS (spatially, temporally, ecologically)
- Better incorporate ecological & socioeconomic sustainability components in future GOALS & communication strategies
- Implement & reward efforts that are OUTCOME-BASED and mission-aligned
- Improve national & FHP monitoring & decision-support systems to ensure timely, long-term ADAPTIVE MANAGEMENT
- Eastern Fish Habitat Partnerships (ACFHP, EBTJV, SARP) – NEXT STEPS?

References

Pajak, P. 2000. Sustainability, ecosystem management and indicators: thinking globally and acting locally in the 21st century. Fisheries 25 (12):16-30.

Pajak, P. 2004. Elevating social concern for sustainability in fisheries and aquatic resource management. Pages 257-270 in E.E. Knudsen et al., editors. Sustainable management of North American fisheries. AFS Symposium 43, Bethesda, MD.

Meffe, G.K.,L.A. Nielsen, R.K. Knight and D.A. Schenborn. 2002. Ecosystem management: adaptive, community-based conservation. Island Press, DC.

Implementation Update NE Climate Science Center

Rachel Muir Interim Center Director NE Climate Center ACFHP, , November 7, 2011 Boston MA

U.S. Department of the Interior U.S. Geological Survey

National Climate Change & Wildlife Science Center – The Big Picture -- Mission

- Provide natural resource managers with the tools and information they need to develop and execute management
- Strategies that address the impacts of climate change on fish, wildlife, and their habitats

NORTHEAST CLIMATE SCIENCE CENTER (NE-CSC)

- Vision
 - A stakeholder driven, interdisciplinary, and geographically distributed team that
 - Empowers decision makers with appropriate climate information and knowledge
 - Supports resource conservation for climate adaptation and mitigation
 - Operates with a high level of transparency and engagement (hope you visited the website)

Big Picture – Goals

- Partnerships with natural resource managers to address their highest priority science needs
- Partnerships with the scientific community to develop needed information and tools
- Delivery of robust tools and information at applicable scales directly to resource managers
- Focus on climate change adaptation_and on climate change in context of other actions and stresses.

NORTHEAST CLIMATE SCIENCE CENTER (NE-CSC)

- Management will engender
 - Innovative, practical and stakeholder identified research
 - Strong leadership from the primary research campus
 - Sustainable partnerships between each member of the Consortium
 - Engaged stakeholders (Federal, State, Tribal, NGOs,)

Geographic Extent of the DOI Northeast Climate Science Center

Northeast Region

- 22 states, 10 of the 21 LCC regions, over 130 million people and multi-ecoregions
 - Extreme gradients in environments and threats
 - Limited federal lands, pattern of ownership and management dominated by relatively small and privately owned parcels
 - Complex history of species extirpations, invasions, range extensions, and restorations
 - Complex climate predictions of regional impacts
 - Wide array of stakeholders

Key CSC Characteristics

- University/federal cooperative access capabilities feds don't have
- Training of grad students pipeline
- Small federal staff
 - Filling regional gaps
 - Synthesis / assessment / aggregation
- \$3-4 m/year, majority in flexible federal funds
- Will build significant cyber infrastructure network
 - At each CSC: university federal node
 - Eight nodes plus NCCWSC
 - Feeding LCCs and other application-oriented efforts (e.g. designed for more than researchers)

UNIVERSITY OF MASSACHUSETTS AMHERST

Richard Palmer (Lead PI)

College of Menominee Nation Melissa Cook (Lead PI)

COLUMBIA UNIVERSITY Radley Horton (Lead PI)

MARINE BIOLOGICAL LABORATORY Linda Deegan (Lead PI)

UNIVERSITY OF MINNESOTA Anthony W. D'Amato (Lead

UNIVERSITY OF MISSOURI COLUMBIA

Frank R Thompson III (Lead

PI)

UNIVERSITY OF WISCONSIN-MADISON

Lewis Gilbert (Lead PI)

COLUMBLA UNIVERSITY

Principal Partners and Customers

- Landscape Conservation Cooperators (6)
- DOI Natural Resource Agencies
- State Fish and Wildlife Agencies
- Multi-agency partnerships (Fish Habitat Partners)

Supporting Agencies/Organizations

Jane A. Fitzgerald, Ph.D. – Central Hardwoods Joint Venture

Consortium for Climate Risk in the Urban Northeast (CCRUN)

Cynthia Rosenzweig, Ph.D. - Columbia University

NOAA

Ellen L. Mecray – Regional Sciences Service Director, Eastern Region

The Nature Conservancy Brian Richter - *Global Freshwater Program* Sarene Marshall - *Global Climate Change Program*

U.S. Fish and Wildlife Service James G. Geiger, Ph.D. – *Northeast Region* Todd Jones-Farrand, Ph.D. - *Central Hardwoods Joint Venture* Tom Will – *Midwest Region* William B. Uihlein, III Ph.D. – *Southeast Region*

U.S. Forest Service Logan Lee - *Eastern Region* Michael J. Dockry - *Liaison to College of Menominee Nation*

Protecting nature. Preserving life."

AMERICAN BIRD

CONSERVANCY

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

TheNature

Conservancy

Existing Linkages with DOI

– USGS – Close Relationships

- UMass Silvio O. Conte Anadromous Fish Research Laboratory, USGS Science Centers
- All four land grant universities host Water Science Centers and USGS Coops
- University of Missouri USGS sponsored Columbia Environmental Research Center
- University of Minnesota and University of Wisconsin *Upper Midwest Environmental Sciences Center*, focus on ecological modeling
- Columbia University National Biological Information
 Infrastructure

Existing Linkages with Potential Partners

- NOAA and NASA
 - CCRUN Consortium for Climate Risk in the Urban Northeast
 - Columbia University Lead with UMass primary partner
 - Developing downscaled climate data and climate forecasts for "Northeast" that could be expanded to the "Northeast"
 - Project provides access to wide range of existing stakeholder
 - Emphasis on water resources, coastal processes, and health
 - NOAA Sectoral Application Research Program (SARP)
 - Use of climate informed forecasts for reservoir management

Initial Tasks

- Establish Start Up Team "Kitchen Cabinet"
- Begin Process for Identifying and Creating Steering Committee and Advisory Board
- Outreach to Partners to Determine Science Needs from Partners (such as LCCs)
- Use this information to establish Science Plan
- Establish small team of permanent USGS Management and Science Staff
- Time Frame 9 months

"Right Sizing" Management

Careful consideration was given to the appropriate size of this consortium

- Coordination of research is essential
- Provide adequate resources to ensure sustainable relationships (Buy-in)
- Based on history of success with stakeholders
- Modeled after other successful large scale research efforts (existing CSC and NOAA RISAs)
- Adaptively manage Consortium size and composition

CSC Stakeholder Advisory Committees

Pay to Play - NO

Leveraging, Coordinating, Identifying Key Priorities – YES

Climate Change Impacts on the New England Environment

About Events **RCM Workshop** NEclimate Bibliography Links Contact DOI Climate Science Center Home

UNDER REVIEW

Climate Science Center

Welcome

📶 MOST VISITED 🔄 GETTING STRUED 🔊 LATEST HEADINES

Partner Institutions Section 1

Section 2

Section 3

Section 4

Summary

Tables

Figures

DOI CSC Bibliography

Videos:

Gary Yohe, Wesleyan University "On the Economics of Framing **Climate Policy: Pricing carb** and the (minimal) value added of updating econom damage estimates and other random thoughts more videos

Upcoming events:

There are no known events

Material on these pages is in reference to a proposal under review (Program Announcement No. G11AS20014) given to the Department of the Interior to establish a Northeast US Climate Science Center (NE-CSC)

A Proposal to the Department of the Interior to **Establish the Northeast Climate Science Center**

This site accompanies a proposal to the Department of the Interior to establish a Northeast US Climate Science Center (NE-CSC), hosted at the University of Massachusetts Amherst. The proposal initiates a consortium of seven institutions across the Northeast Region (as defined by the USGS), each contributing significant and unique expertise to the Northeast Region's climate challenge.

The links to the left with avigate through the majority of the proposal text and graphics, including an interactive bibliography. It is intended to enhance the proposal by providing direct links and ease of navigation.

ease don't hesitate to contact us with questions or feedback.

Thank you!

Now start talking and I will start listening!

 On the web - <u>http://www.cns.umass.edu/neclimate/doi-</u> <u>csc/section-4-1</u>

Northeast Aquatic Connectivity

ERIK MARTIN THE NATURE CONSERVANCY

> <u>emartin@tnc.org</u> 207-619-3745

BACKGROUND: TEAM, PURPOSE & GOALS

METHODS

RESULTS AND PRODUCTS

NEXT STEPS & IMPROVEMENTS

Project Team & Study Area

- Northeast Aquatic Connectivity Project.
 - Funded through NE Association of Fish and Wildlife Agencies
 - o 13 state study area
- Northeast Aquatic Connectivity Workgroup:
 - State fish and wildlife agency staff (freshwater and/or marine)
 - Canadian provincial agency
 - NGO, academic, & federal reps
 - 40+ particpants
- Led by staff from The Nature Conservancy's Eastern U.S. Division

Purpose & Goals

- Help states to move from *opportunistic to "ecological benefits*" approach to dam removal / fish passage improvement
- Produce a *tiered list* of dams in the Northeast U.S. based on their potential ecological benefit if removed / improved passage
- Develop a *tool* that allows managers to re-rank dams at multiple scales (state, HUC, etc) or using attribute filters (river size class, dam type, etc)

- Potential uses of results From workgroup participants
 - Project evaluation
 - Communicating with owners/funders
 - Grant writing
 - Bring attention to new projects that may not have been looked at before
 - Developing basin-level plans
 - Local-level communication
 - Inform advocacy efforts
 - Stimulate proactive action rather than opportunistic removals

Data Preparation -GIS

- Dams
- Natural
 Waterfalls
- Anadromous
 Fish Habitat

Dams – Primary Unit of Analysis

• Sources:

- State databases
- o NID
- o GNIS

Snapped to 1:100k NHD Plus – enables network analysis

• Has the potential to introduce error: farm pond next to a mainstem river

Automated error-checking flags to prioritize manual review

- River name in dam database = river name in NHDPlus
- Large dam snapped to a small stream
- TNC manually reviewed flagged dams
- Sent to state contacts for additional review / where TNC unable to make a determination

Waterfalls

Sources

- GNIS database State biologists
- Snapped to 100k NHDPlus
- More limited review
 - Fewer attributes available (e.g. no RiverName to compare)
 - Less comprehensive data

Anadromous Fish

• Sources

- ASMFC 2006
- Houston et al. 2007 (Maine)
- State biologists
- All data transferred to 1:100k NHDPlus

• 7 Anadromous Species

- Alewife
- blueback herring
- American shad
- hickory shad
- Atlantic salmon
- striped bass
- Atlantic sturgeon

• Current & Historical presence

Additional Data

• NLCD 2001

- o Natural
- Agricultural
- o Impervious

TNC Conserved lands database

Northeast Aquatic Habitat Classification (TNC)

- Size class
- Cold / cool water habitats

Eastern Brook Trout Joint Venture data

NatureServe

- Fish species richness
- Rare fish, mussels, crayfish
- Roads & Railroads (Esri)

Metric Calculation

Descriptive attributes in 5 categories calculated for all dams in GIS

- Connectivity Status
- Connectivity Improvement
- Watershed & Local Condition
- Ecological
- Size Class
- Relative weights for metrics developed by NEAFWA workgroup
- Different weights for anadromous and resident fish scenarios

Attribute	ANADROMOUS	RESIDENT
Downstream Dam Count	0	0
Downstream Impassable Dam Count	15	
Upstream Dam Density	3	1
Downstream Dam Density	0	1
Distance to River Mouth from Dam	7	0
Upstream River Length	3	0
Density of Small (1:24k) Dams in Upstream Functional Network Local Watershed	5	3
Density of Small (1:24k) Dams in Downstream Functional Network Local Watershed	0	3
Density of Road & Railroad / Small Stream Crossings in Upstream Functional Network Local W	3	5
Density of Road & Railroad / Small Stream Crossings in Downstream Functional Network Loca	0	5
Number of Hydro Dams on Downstream Flowpath	5	0
Connectivity Status Subtotal	41	18
Upstream Functional Network Size	15	0
The total length of upstream and downstream functional network	0	20
Absolute Gain	2	10
Connectivity Improvement Subtotal	17	30
% Impervious Surface in Contributing Watershed	3	5
% Natural LC in Contributing Watershed	0	5
% Impervious Surface in ARA of Upstream Functional Network	2	2
% Impervious Surface in ARA of Downstream Functional Network	0	2
% Natural LC in ARA of Upstream Functional Network	5	2
% Natural LC in ARA of Downstream Functional Network	0	2
% Conserved Land within 100m Buffer of Upstream Functional Network	0	2
% Conserved Land within 100m Buffer of Downstream Functional Network	0	2
Watershed and Local Condition Metric Subtotal	10	22
Number of anadromous species present downstream	5	0
Presence of anadromous species (binary, yes/no)	20	0
Current # of rare (G1-G3) fish species in HUC8 (Max #)	0	3
Current # of rare (G1-G3) mussel species in HUC8 (Max #)	0	3
Current # of rare (G1-G3) crayfish species in HUC8 (Max #)	0	1
Current "Healthy" Eastern Brook Trout in upstream functional network (EBTJV dataset)	0	8
Current Native fish species richness - HUC 8 (Max #)	0	3
Ecological Metric Subtotal	25	18
River Size Class	5	0
Number of upstream size classes >0.5 miles gained by removal	2	0
Miles Gained of Cold Water Habitat (any stream size)	0	7
Total Reconnected # stream sizes >0.5 mile (upstream + downstream)	0	5
Size Metric Subtotal	7	12
Sum of Weights (MUST =100)	100	100

- This example ranks 4 hypothetical dams based on 2 metrics
- Simple, transparent

*				
Dam Name	USFunctional Network Length (rank)	DS Functional Network Length (rank)		
Dam A	3	4		
Dam B	2	2		
Dam C	1	3		
Dam D	4	1		

Dam Name	US Functional Network Length (% rank)	DS Functional Network Length (% rank)
Dam A	75	100
Dam B	50	50
Dam C	25	75
Dam D	100	25

Dam Name	US Functional Network Length	DS Functional Network Length
Dam A	75 * 0.75	100 * 0.25
Dam B	50 * 0.75	50 * 0.25
Dam C	25 * 0.75	75 * 0.25
Dam D	100 * 0.75	25 * 0.25
	/	

S Functional Network ngth (weighted rank)	DS Functional Network Length (weighted rank)	1	Summed Ranks
56.25	25		81.25
37.5	12.5	→	50
18.75	18.75		37.5
75	6.25		81.25

Dam Name	Final Ranks
Dam C	1
Dam B	2
Dam A	3
Dam D	3

All dams are sequentially ranked for all attributes.

Dam Name	US Functional Network Length (m)	DS Functional Network Length (m)
Dam A	239,569	2,572
Dam B	342,665	62,525
Dam C	572,554	6,233
Dam D	125,664	87,425
Dam Name	US Functional Network Length (rank)	DS Functional Network Length (rank)

Dam Name	US Functional Network Length (rank)	DS Functional Network Length (rank)
Dam A	3	4
Dam B	2	2
Dam C	1	3
Dam D	4	1

Ranks are converted to a % scale. This is necessary for "applesto-apples" comparisons when metric values are not continuous variables

	· · · · · · · · · · · · · · · · · · ·	
Dam Name	US Functional Network Length (rank)	DS Functional Network Length (rank)
Dam A	3	4
Dam B	2	2
Dam C	1	3
Dam D	4	1
Dam Name	US Functional Network Length (% rank)	DS Functional Network Length (% rank)
Dam Name Dam A	US Functional Network Length (% rank) 75	DS Functional Network Length (% rank) 100
Dam Name Dam A Dam B	US Functional Network Length (% rank) 75 50	DS Functional Network Length (% rank) 100 50
Dam Name Dam A Dam B Dam C	US Functional Network Length (% rank) 75 50 25	DS Functional Network Length (% rank) 100 50 75

Ł

Multiply % ran by attribute weight. In this example:

US Functional Network Length = 75

DS Functional Network Length = 25

Dam Name	US Functional Network Length (% rank)	DS Functional Network Length (% rank)	
Dam A	75	100	
Dam B	50	50	
Dam C	25	75	
Dam D	100	25	
Dam Name	US Functional Network	DS Functional Network	

Dam Name	US Functional Network Length	DS Functional Network Length
Dam A	75 * 0.75	100 * 0.25
Dam B	50 * 0.75	50 * 0.25
Dam C	25 * 0.75	75 * 0.25
Dam D	100 * 0.75	25 * 0.25

Sum weighted ranks. All metrics which are included (weight >0) are summed to result in a summed rank.

		*		
	Dam Name	US Functional Network Length	DS Fun	ctional Network Length
	Dam A	75 * 0.75		100 * 0.25
	Dam B	50 * 0.75		50 * 0.25
	Dam C	25 * 0.75		75 * 0.25
	Dam D	100 * 0.75		25 * 0.25
US Fu	Inctional Network	DS Functional Network		
Lengt	h (weighted rank)	Length (weighted rank)		Summed Ranks
	56.25	25		81.25
	37.5	12.5	→	50
	18.75	18.75		37.5
	75	6.25		81.25

L

Re-rank summed ranks. The summed ranks are in turn ranked

×				
US Functional Netw Length (weighted r	vork DSFu ank) Leng	unctional Net th (weighted	work rank)	Summed Ranks
56.25		25		81.25
37.5		12.5		► 50
18.75		18.75		37.5
75		6.25		81.25
	Dam Nar	ne Fina	Ranks	
	Dam A		3	
	Dam B		2	
	Dam C		1	
	Dam D		3	
	Bamb		<u> </u>	

The final ranks are sorted for presentation.

	Dam Na	ame	Final Ranks			
	Dam	A	3			
	Dam	В	2			
	Dam	С	1			
	Dam D		3			
		•				
Dam Name			Final Rank	s		
Dam C						
Dam B		2				
Dar	n A		3			
Dar	n D		3			
Dui						

Results and Products

DRAFT JUNE, 2011

NAC Report

The Nature Conservancy & Northeast Association of Fish and Wildlife Agencies
Northeast Aquatic Connectivity
An Assessment of Dams on Northeastern Rivers

- **1.** Executive Summary
- 2. Background, Approach & Outcomes
- 3. Data Collection, Data Preprocessing & Data Gaps
- 4. Methods and Software Developed
- 5. Assessment Results
- 6. Northeast Aquatic Connectivity Strategy
- 7. Conclusion
- 8. References
- 9. Appendices

Results														
	1	¥ В	С	D	E	F	B H	1	J	К	L	Μ	N C	P I
	2 Northeast Aquatic Connectivity Conservance													
	Anadromous Fish Benefits Scenario Results Annual Results													
	other important information regarding the interpretation of these results. Note: These results are control alcoholicially within each result bits have default but can be control alcoholicially within each result bits.													
"Defel+"	6	chosen by t clicking on Choose "E:	the user. For example, to sort dams within the "10" at the beginning of Row 10. 2) xpand the Selection" 4) If the header roo	a state: 1) Highlight the entir Dn the "Data" tab click the lar r (Row 3) gets highlighted. cl	e first row of data by ge "Sort" button. 3) neck the "My data has									
Default		headers" b "Tiered res within a sta	ox 5) Under the "Sort by" dropdown se ults" or "Overall Results Rank". If you w te add a 3rd sort level and choose "Dam	ect "State" 6) Click "Add a ant to sort alphabetically by o Name" from the drondown 7	Level" and choose eithe dam name within a tier ") You can then filter out	r •				Result Rank	s			
results	7	unwanted s	tates using the filter dropdown in the Sta	te column (cell C3).	j rou cui cue nice ou	·				Catar	orical Matric Paak	-		
alaulatad		State	Dam Name	Stream Name	Town (ZIP	HUC12 Name	Tiered Result	s Results	Connectivity	Connectivity	∀atershed & Looal	Ecological	Size Rank	Size Class
calculated	9 10	ME	💌 🖌	Kennebec River	Madison	Getchell Brook-Kennebec River	(5% bins)	Ran 💌 564	8706	3435	Condition 3653	7	11	3b - Med. Mainster
using	11 12	VA PA	ACCOTINK DAM ADAM T. BOWER MEMORIAL	Accotink Creek Susquehanna River	Springfield	Accotink Creek Hallowing Run-Susquehanna River	1	431 600	3885 12778	740	12357 9166	2	24 5	1b - Creek 5 - Great River
wonkgnoup	13	RI VA	ADAMSVILLE POND ADKINS DAM	Johnchecohunk Swa	Westport Waverly	Westport River-Frontal Rhode Islan Johnchecohunk Swamp-Cypress	6 1 6 1	594 439	2129 1741	3653	7392 945	6 4	24 25	1b - Creek 1a - Headwater
workgroup	15	ME	Alamoosook Dam Alder Brook Dam	Narramissic River Grendell Brook	Urland Mapleton Mattagogi	Alamoosook Lake Alder Brook Heatteuska Creek-Matteresi Piyar	1	264	983 2398 492	413 1515 6227	3273 1223 303	7	24	2 - Small River 1b - Creek
defined	18	NJ ME	ALLOWAY LAKE DAM	Alloway Creek Kennebec Biver	Woodstown Apsop	Upper Alloway Creek	1	277	3024 11934	1409	6096 4003	2	23	1b - Creek 3b - Med. Mainster
ma at mi a	20	VA	AQUIA CREEK DAM ASHLAND MILL DAM	Aquia Creek South Anna River	Stafford Ashland	Lower Aquia Creek Cedar Creek-South Anna River	1	147	8230 4566	454	5635 4254	2 3	7	2 - Small River 3a - Med. Trib. Rive
metric	22 23	CT MA	ASPINOOK POND DAM Assawompset Pond Dam	Quinebaug River Nemasket River	Jewett City Lakeville	Cory Brook-Quinebaug River Nemasket River	1	626 420	10646 6735	447 1888	8293 4994	5	16 7	3a - Med. Trib. Rive 2 - Small River
weights	24 25	MD NJ	ATKISSON DAM ATSION LAKE DAM	Winters Run Mullica River	Joppa Shamong	Lower Winters Run Upper Mullica River	1 1	69 262	1017 1136	389 952	10340 6058	5	7 24	2 - Small River 1b - Creek
Weights	26 27	VA VA	AVERY DAM AYLETT MILL DAM	Otterdam Swamp Aylett Creek	Spring Grove Aylett	Otterdam Swamp Aylett Creek-Mattaponi River	1	198 512	2526 4249	2652 3825	812 4543	4	24 24	1b - Creek 1b - Creek
	28 29	VA VA	BAKERS DAM BALLS MILLPOND DAM	Balls Branch	Disputanta Lancaster	Second Swamp Lancaster Creek	1	300	3404 889	2824 3433	1749 2478	4	24 24	1b - Creek 1b - Creek
	30	ME VA	Bar Mills Dam BARLOWS POND DAM	Saco River Skimino Creek	Hollis Center Williamsburg	Stony Brook-Salmon Falls Skimino Creek-York River	1	379 486	3907 1826	1001 5198	5933 5417 7022	4	18 24	3b - Med. Mainster 1b - Creek
	33	MD	BARREN CREEK DAM	Barren Creek	Mardela Springs	Barren Creek-Nanticoke River	1	193 244	823 512	1362	9045 2951	3	24	1b - Creek
	35	MA	Barstons Pond Dam BASHAKILL WILDLIFF MANAG	Cotley River Basher Kill	East Taunton	Cotley River-Taunton River	1	572	1431	3287	10514	4	23	1b - Creek
	37	VA	BASKERVILLE MILL DAM Batson Biver Dam	Nottoway River Batson River	MC Kenney Kennebunkport	Waqua Creek Batson Biver-Goosefare Bay	1	168	5310	219	3996	4	21	3a - Med. Trib. Rive
	39	NJ	BATSTO DAM BATTERSEA DAM	Batsto River Appomattox River	Egg Harbor City Petersburg	Batsto River Oldtown Creek-Appomattox River	1	115	5594 9794	322 2068	3076 6878	6	7	2 - Small River 3b - Med. Mainster
	41 42	VA NJ	BAYLORS DAM Beaver Club Dam	Baylors Creek Sluice Creek	Caret Cape May Court H	Elmwood Creek Dennis Creek	1	185 197	1651 302	2949 2896	3311 3743	2	24 24	1b - Creek 1b - Creek
	43 44	MD VA	BEAVERDAM CREEK WEIR BEAZLEY DAM	Beaverdam Branch Parrotts Creek	Cordova Jamaica	Kings Creek Parrotts Creek-Rappahannock Riv	1	367 419	1301 269	3221 8039	8598 1191	3	24 25	1b - Creek 1a - Headwater
	45	VA NY	BELSCHES DAM BEBLIN FARM DAM	Moores Swamp Shin Creek	Carson Livingston Manor	Jones Hole Swamp-Moores Swamp Middle Beaver Kill	1	230 590	4747 4995	703 4014	3013 1358	4	24 24	1b - Creek 1b - Creek
	47		AC Anadromous Results	NAC Resident R	Results NAC	Scenario Weights	1	679	176	I 8860	1 4073		25	11a - Headwater
	Read	y 🛅						_					70% 😑 —	• •

Anadromous fish weighting scenario

Results tiered into 5% bins-- the precise order isn't as meaningful as the broad order

Driven by

Anadromous fish data

Upstream network length

Resident Fish Weighting Scenario

Driven by:

Total length of recombined connected network

Watershed metrics (e.g. landcover, impervious surface)

CT River Basin

 Anadromous Benefits Scenario

- 88 dams in top 10% of regional results
- 49 dams have current anadromous fish habitat in downstream network
- 358 dams have historical anadromous fish habitat documented

CT River Basin

- Resident Benefits Scenario
- 74 dams in top 10% of regional results
- Longest connected network: 685km
- Median connected network length: 1.8 km

Penobscot River Basin: Basin Assessment

- Dams in the top 5 tiers (1st quartile) are labeled
- Provides additional support/justification to current project
- Highlights other dams which may not have been "on the radar"

Penobscot-Kennebec-Saco/South Coastal

• Top 10% are labeled

Caution: these results...

- Are **not** a hit list of dams
- Are **not** a replacement for sitespecific knowledge and field work
- Do **not** incorporate any social or feasibility factors
- Do **not** incorporate every possible aspect of potential ecological benefit

- Are a screening-level tool
- Use the **best available** data

Next Steps and Improvements

Result Distribution

- Data sharing
- In addition to posting on NEAFWA RCN website...
 - Distribute to Workgroup
 - Notify other organization who are active in dam removals (newsletters, conferences)
 - Wider public / media release (TNC website)

Potential Improvements

Input data

- On-going process
- Annual updates, funding dependent

• Scale:

- ~50% of dams fall on 1:100k hydrography
- ~80% fall on 1:24k hydrography

More nuanced approach to existing fish passage

- Passability score
- Dams in series

Next Steps

Chesapeake Fish Passage Prioritization

• Builds off NEAFWA work & MD Ecological Value Criteria

• Improved...

- x resolution (1:24k)
- × diadromous fish data
- Web-based Decision Support tool
- Includes field-sampled ecological condition

Fish Passage Restoration in the Mystic Lakes, Medford, MA

Brad Chase -- MA Division of Marine Fisheries ASMFC Annual Meeting, Boston, November 2011

Mystic Lakes

- Severely altered urban watershed
- Highly ranked restoration project
- Water resources have multiple uses
- Influential outreach effort
- Habitat assessment finds impairment
- Dam reconstruction provides rare opportunity
- Results in unique fish passage improvements

- 1838 -- 1st of many leather processing mills.
- 1864 -- Mystic Lake Dam built for water supply.
- 1908 -- Craddock Dam built in Medford Square.
- 1967 -- Amelia Earhart Dam built at tidal interface.

Mystic Lakes Dam

- -- Dam owned by Mass. DCR
- -- Targeted for decades for reconstruction

Mystic Lakes Bucket Brigade, 2005-2009

http://www.mass.gov/dfwele/dmf/publications/technical.htm

Massachusetts Division of Marine Fisheries Technical Report TR-44

River Herring Spawning and Nursery Habitat Assessment: Upper Mystic Lake, 2007-2008

B. C. Chase, T. Callaghan, M. B. Dechant, and P. Patel

Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs Department of Fish and Game Massachusetts Division of Marine Fisheries

November 2010

Figure 1. River herring habitat assessment stations in the Upper Mystic Lake.

Diadromous Fish QAPP Objectives

- 1. Provide standardized sampling protocols.
- 2. Guidance for diadromous fish habitat restoration.
- 3. Produce data that is acceptable to *Mass*DEP waterbody assessments.
- 4. Develop criteria for classifying and protecting diadromous fish habitat.

Habitat Criteria and Classification

Mystic River Watershed Association

Lake Nutrient Measurements N = 10

Figure xx. Water column profiles for dissolved oxygen at station MYS3 in the Mystic Upper Lake, 2007-2008. The measurements made in 2007 are marked with black symbols.

Summary of river herring habitat assessment at the Upper Mystic Lake, 2007-2008.

Parameter	Units	Sample Size (No.)	Acceptable Criteria	Exceedance (%)	Classification
Temp. (nursery)	C°	50	<28.3	0	Suitable
Temp. (spawning)	C°	27	<26.0	1	Suitable
DO	mg/L	70	>5.0	26	Impaired
pН	SU	87	6.5 to <8.3	3	Suitable
Secchi	m	26	>2.0	35	Impaired
N+N	mg/L	10	<0.32	100	Impaired
TP	ug/L	10	<8.0	100	Impaired
Fish Passage	NA	9	BPJ	100	Impaired
Stream Flow	NA	9	BPJ	100	Impaired

Notes:

1. Bottom measurements were excluded from DO classification due to QAPP exemption.

2. Impaired classifications result from exceedances >10% at transect stations during two seasons.

3. The US EPA TN criterion was adopted for N+N measurements.

Mystic Lakes Bucket Brigade, 2007

Dam Construction, 2011

Completion – Spring 2011

Eel Passage

Eel Passage, 2007-2010

Juvenile Downstream Passage

-- experience will contribute to future designs and applications.

Operations and Maintenance

- Passage protocols included in dam O&M
- Draft O&M under review by DCR and DMF
- Adult herring spawning
- Eel passage
- Juvenile herring emigration

Signs of Success

 Access to 165 acres
Integrated eel passage
Dedicated juvenile passage facilities and operations

Next Step: Monitoring projects for herring and eels with Mystic River Watershed Association

Removing the Wapping Road Dam: Restoring Habitat on the Jones River

Beth Lambert Division of Ecological Restoration November 8, 2011

Mission: To restore and protect the health and integrity of the Commonwealth's rivers, wetlands, and watersheds for the benefit of people, fish, and wildlife

Division of Ecological Restoration Habitat Restoration Projects

Second dam: Wapping Road Dam

Third dam: Forge Pond Dam

Wapping Road Dam

- Privately owned
- No fish ladder
- Blocked 3.7 miles mainstem
 + 18.3 miles tribs = 22 miles
- Volunteers count ~200 herring/year at Elm St. Dam

Dam Statistics

- Feasibility study completed March 2009
- Engineering plans completed February 2010
- Permitting completed May 2011
- Construction October 2011

- Construction cost: ~\$300,000
- Feasibility, engineering, permitting ~\$150,000
- NOAA largest funder
- Jones River Watershed
 Association project lead

DER, DMF,
 Massachusetts Env.
 Trust, USFWS,

Wapping Road Dam, Jones River, Kingston, 2008

Wapping Road Dam Removal – October 2011, halfway through construction

FAT

