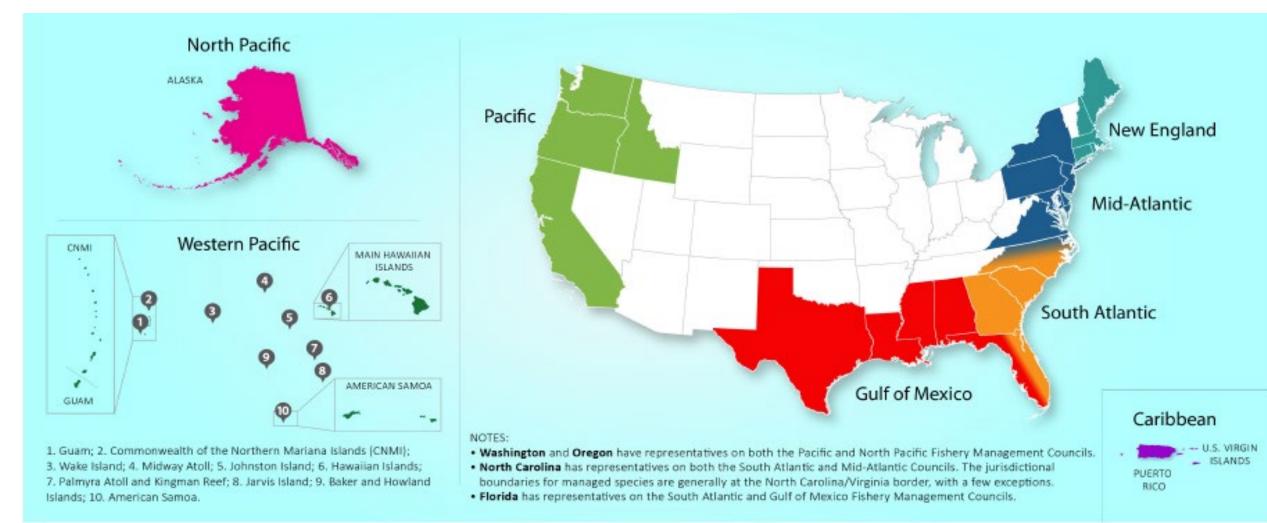
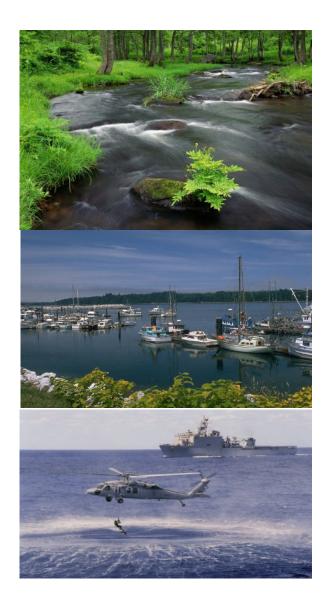


Mid-Atlantic Fishery Management Council and ACFHP

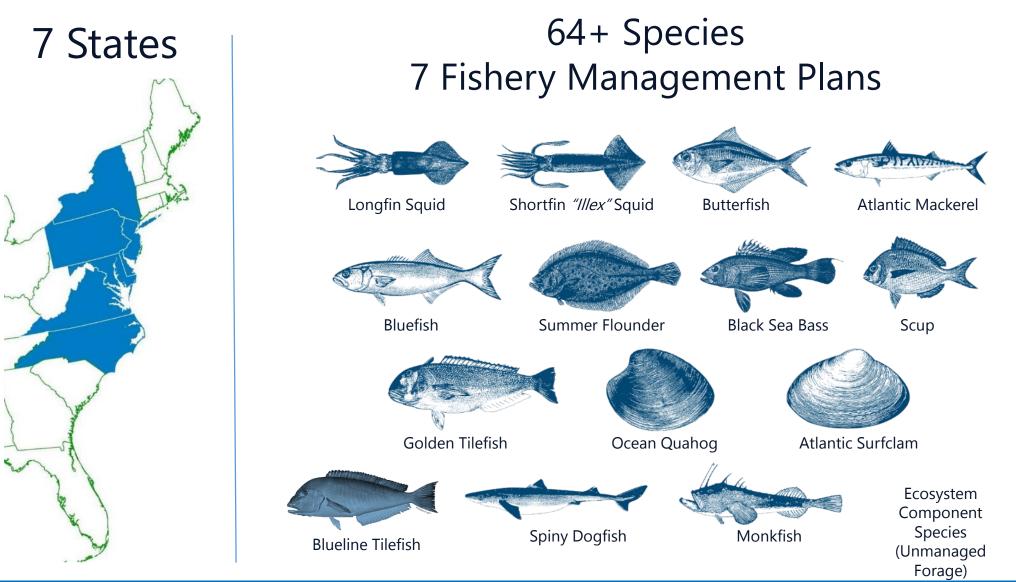

ACFHP Steering Committee Meeting

Jessica Coakley, MAFMC Staff

May 22-23, 2019


The Councils

Develop and amend fishery management plans for approval/implementation by the National Marine Fisheries Service (NMFS) on behalf of the Secretary of Commerce



US Fisheries Management

- Inland Waters
 - Department of the Interior (US F&WS)
- State waters (up to 3 mi)
 - Fishery Commissions
 - State Natural Resource Agencies
- Marine Federal waters (>3mi-200 mi)
 - Department of Commerce (NOAA Fisheries/Councils)

Mid-Atlantic Council

Why become a member?

- Council would benefit from improved understand of threats to healthy fish habitat.
- Requires making the connection between headwater and continental shelf habitats.
- Strengthening relationships with partners and management bodies along that

Why become a member?

 Council can contribute by helping to prioritize actions and policies that protect, restore, or maintain resilient habitats that optimize ecosystem functions and services to the benefit of both fish and wildlife.

Council Mission and Vision

- Mission: Healthy and productive marine ecosystems supporting thriving, sustainable marine fisheries that provide the greatest overall benefit to stakeholders.
- Vision: "...The Council is committed to the effective stewardship of these fisheries and associated habitats..."

Conclusions

1. To carry out their mutual intent to design and implement an ACFHP plan.... The Council can contribute to the development of an ACFHP plan that considers the importance of nearshore fish habitat resource needs to offshore fish and ecosystem productivity.

2. To work together to facilitate current and future mutually agreed upon joint ...activities.. for the benefit of Atlantic fish habitat resources.

The Council can contribute by helping ACFHP and its partners prioritize regional habitat needs as well as prioritizing fish habitat conservation, protection, and restoration activities.

3. To use the resources of their agencies and organizations in a manner consistent with their mission and the mission of ACFHP.....

The Council will continue to pursue management measures and policies that are consistent with its commitment to the effective stewardship of its fisheries and associated habitats. The Council will also pursue opportunities to mutually support ACFHP and its efforts where they align.

Conclusions

4. To collectively pursue funding initiatives...

The Council will support ACFHP efforts to pursue funding opportunities and will provide the weight of its support for its habitat activities as appropriate.

5. To collectively pursue interagency/organization agreements, cooperative agreements, grants, and/or contracts to fund approved projects.

The Council will work with ACFHP partners as they to pursue opportunities to fund approved projects.

6. To encourage and support the participation of other appropriate agencies and organizations by mutual agreement of the partners.

As a partner, the Council will help identify opportunities to bring in other groups and partners where it may be of benefit to ACFHP.

Thanks for your consideration!


U.S. FISH AND WILDLIFE SERVICE FUNDING FOR ACFHP PROJECT UPDATES

ON-THE-GROUND PROJECTS

- From 2010 to 2018 U.S. Fish and Wildlife Service funded 20 on-the-ground projects
- \$672,234 awarded to partners
- Leveraged \$11,948,033 matching funds and in-kind services
- Funding supported
 - 9 fish passage projects
 - 11 coastal habitat restoration projects
 - 3 marsh/mangrove restoration projects
 - 3 submerged aquatic vegetation (SAV) projects
 - 4 oyster reef restoration projects
 - 1 sturgeon spawning habitat restoration

06/15/2010

ACFHP OPERATIONS

- From 2014 -2018 U.S. Fish and Wildlife Service provided funding for ACFHP Operations
- \$251,125 awarded to ASMFC
 - 2018 \$66,125
 - 2017 \$75,000
 - 2016 \$50,000
 - 2015 \$30,000
 - 2014 \$30,000

RANKED LIST FOR FY18 FUNDING

TOTAL ACFHP ALLOCATION - \$214,585

COORDINATION - \$75,000 (NO INDIRECT) PROJECTS - \$139,000 (15% INDIRECT)

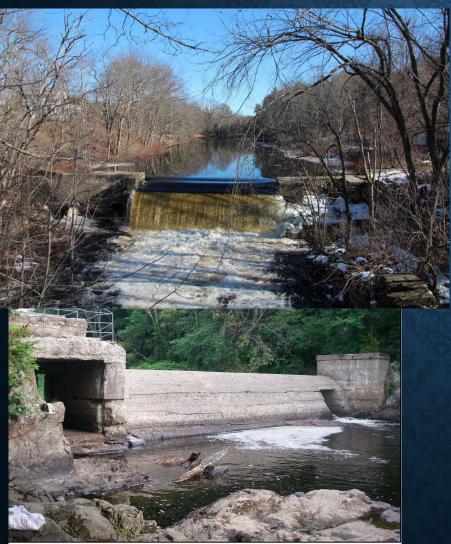
TITLE	PROPOSED	To Project	NOTES
ACFHP Operations FY18	\$75,000	\$66,125	
Columbia Dam Removal	\$50,000	\$50,000	
Oyster Reef Restoration in Back sound Rachel Carson Reserve, Beaufort, NC	\$49,833	\$49,833	
Seagrass Conservation Moorings, Coecles Harbor, Shelter Island, NY	\$32,001	\$17,965	NOAA \$14,035
Dam Removal on Childs River, Falmouth, MA	\$49,450		request removed
Restoration of Submerged Aquatic Vegetation in Vegetation in Freshwater and Meso-haline Region of Region of the Chesapeake Bay MD	\$16,020	9,725	funding refused
Total	\$272,304	\$183,923	
Remainder			

RANKED LIST FOR FY18 FUNDING

TOTAL ACFHP ALLOCATION - \$214,585

COORDINATION - \$75,000 (NO INDIRECT)

PROJECTS - \$139,000 (15% INDIRECT)


TITLE	PROPOSED	To Project	NOTES
ACFHP Operations FY18	\$75,000	\$66,125	
Columbia Dam Removal	\$50,000	\$50,000	
Oyster Reef Restoration in Back sound Rachel Carson Reserve, Beaufort, NC	\$49,833	\$49,833	
Seagrass Conservation Moorings, Coecles Harbor, Shelter Island, NY	\$32,001	\$17,965	NOAA \$14,035
Dam Removal on Childs River, Falmouth, MA	\$49,450		request removed
Restoration of Submerged Aquatic Vegetation in Vegetation in Freshwater and Meso-haline Region of Region of the Chesapeake Bay MD	\$16,020	9,725	
Total	\$272,304	\$183,923	
Remainder			

FY19 RECOMMENDED PROJECTS

Name	State	Avg. Score	Request	Match
Whitford Pond Dam and River Restoration Design, Mystic River	CT	186.3	\$50,000	\$271,000
Restoration of SAV in the Freshwater and Meso-haline Region of the Chesapeake Bay **	MD	172	\$16,895	\$30,018
Outlet Stream/Box Mill Dam, North Vassalboro	ME	178.5	\$50,000	\$335,027
Old Mill Pond Dam Fish Passage, Wreck Pond Brook	NJ	159.3	\$50,000	\$89,718
Finding the Right Mix: Developing Best Practices for Cement/Oyster Composition Artificial Reefs **	\mathbf{FL}	145.5	\$48,091	\$57,525
Repair of Fish Ladder in Pennamaquan River	ME	145	\$50,000	\$77,500
Desden Bog Wildlife Management Area Fish Passage Project	ME	140	\$50,000	\$57,750
Removal of Abandoned Dam on Smelt Brook	ME	105	\$7,500	\$6,756

SHEEPSCOT RIVER BARRIER REMOVAL, ME Coopers Mill FY17 - \$15,000 Total - \$930,600

Coopers MillFY17 - \$15,000Total - \$930,600Head TideFY17 - \$35,000Total - \$446,000

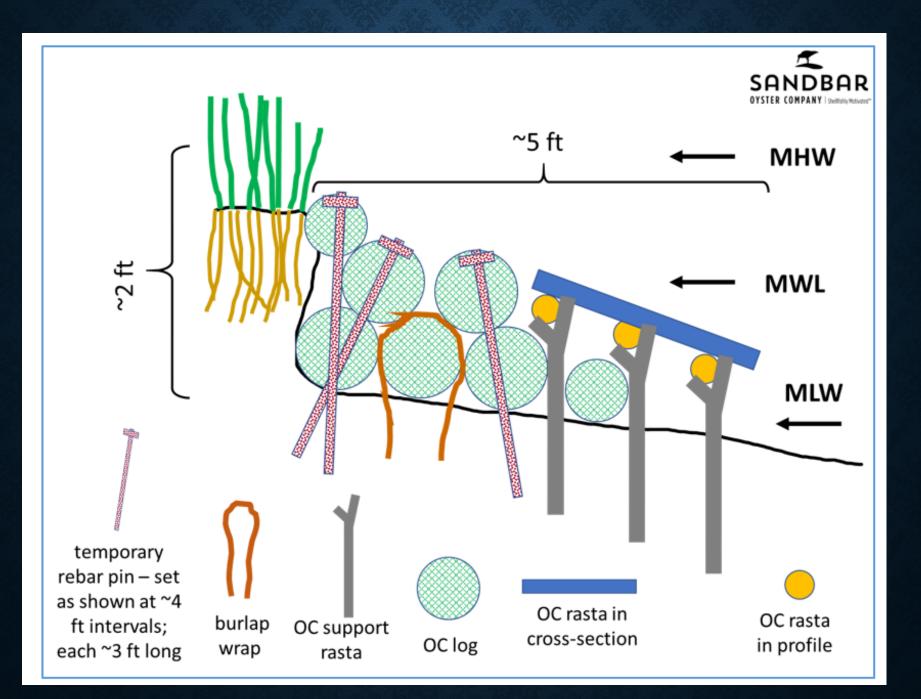
- Coopers Mill Dam Removal and Head Tide Partial Removal
- Opens 71 miles for Atlantic salmon and other species
- Southernmost Atlantic salmon river designated as Critical Habitat
- Timeframe: Coopers Mill completed summer/fall of 2018. Head Tide will occur in 2019.

COOPERS MILL DAM

COOPERS MILL DAM REMOVAL

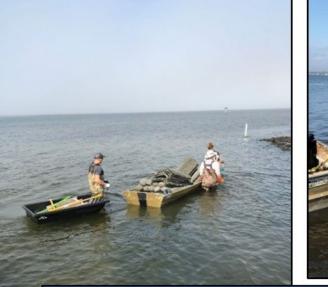
DRY HYDRANT INSTALLED

OVERLOOK



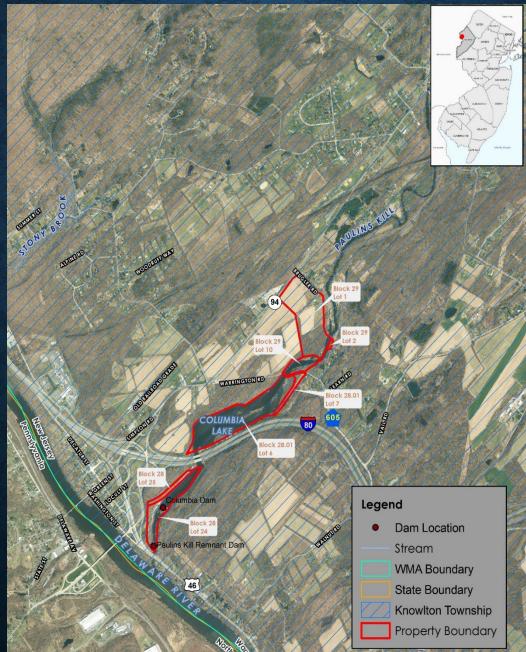
BOGUE SOUND, OYSTER REEF AND ESTUARINE SHORELINE RESTORATION

FY18 - \$38,110 Total - \$77,236


- Recycled oyster shells placed along 300 ft. of shoreline to promote saltmarsh
- Nursery habitat for black sea bass, red drum
- Feeding ground for summer flounder
- Timeframe: summer 2018

OYSTER CATCHER LOGS

FEBRUARY 21, 2019


COLUMBIA DAM REMOVAL, KNOWLTON TOWNSHIP, NJ

FY18 - \$50,000 Total - \$7,193,000

- Remove dam to open 20 river miles
- First obstruction to passage off the Delaware River in the Paulins Kill
- Received Delaware Watershed Conservation Funding
- Timeline: Removal began August, 2018

COLUMBIA DAM REMOVAL

COLUMBIA DAM REMOVAL

COLUMBIA DAM REMOVAL

DAM REMOVAL COMPLETED IN MARCH, SHAD FOUND UPRIVER IN APRIL!

FY19 USFWS FUNDING TIMELINE

- Typically instructions for FHP reports goes out in November
- This year May 7
- Reasons for delay?
 - Request from board to increase coordination funding
 - Furlough
 - New National Coordinator Eric MacMillan
- Due date for reports June 5
- Reviews will be completed by the end of June
 - Regional Coordinators
 - NFHP Board
- Regional directors and headquarter reviews in July
- Funding out to USFWS offices in August grant agreements
- Hoping to get operational funding approved and out sooner!

National Fish Habitat Conservation Through Partnerships Act (2019 – 2023)

Rep. Rob Wittman (R-VA) and Rep. Marc Veasey (D-TX) in the House, and Senator Mike Crapo (R-ID) and Senator Benjamin Cardin (D-MD) introduced these bipartisan bills on March 12, 2019.

- Codifies the existing National Fish Habitat Board and National Fish Habitat Partnership (NFHP)
- Ensures the Board evaluates and recommends projects and partnerships for funding to the Secretary of the Department of the Interior.
- Codifies the established program as a state and locally-led, public-private partnership effort that facilitates a purely voluntary, from "the-ground-up" fish habitat conservation program driven by multiple partners for local and regionally-based fish habitat conservation.
- Codifies self-governing responsibilities and expectations of the partnerships for fish habitat conservation work
- The FWS is the designated agency for grant management of the National Fish Habitat Program, with technical and scientific support for the program provided by other federal agencies including the U.S. Department of Commerce and the U.S. Department of Agriculture.
- The non-federal match requirement for projects is not less than 50%, with the ability for in-kind, donations, and agreements with federal agencies to fulfill projects. The bill codifies NFHP at an authorized funding level of \$7.2 million annually. Appropriators would determine on an annual basis how much funding is available to the program, not to exceed \$7.2 million. The legislation allows funds for federal agency technical assistance and provides for appropriate Congressional oversight of partnership designations, projects, and use of funds.
- Provides important protections for the following: private property and water rights; state water laws and adjudication of water rights; tribal treaty rights; Department of Commerce authority; and, restrictions on federal acquisitions of water and property rights
- Provides 5 percent of funds annually appropriated for administration of the Act.

National Fish Habitat Conservation Through Partnerships Act

Key Policy Improvements of the Legislation

- Codifies the existing National Fish Habitat Board and National Fish Habitat Partnership (NFHP) to fulfill the vision established in the 2006 National Fish Habitat Action Plan, where strategic implementation of local fish habitat projects, are implemented by regional Fish Habitat Partnerships. Oversight of these efforts are provided by the Board, which is a non-regulatory entity whose membership consists of representatives from state fish and wildlife agencies; federal fish, wildlife and natural resource management agencies; sportsmen's and conservation organizations; and the business community.
- Ensures the Board evaluates and recommends projects and partnerships for funding to the Secretary of the Department of the Interior. Currently, under the existing NFHP, the U.S. Fish and Wildlife Service (FWS) determines project selection and funding awards regardless of Board recommendations. This legislation provides an added layer of transparency and public involvement in project selection, as was originally envisioned by stakeholders involved with the program inception and the 2006 National Fish Habitat Action Plan.
- Codifies the established program as a state and locally-led, public-private partnership effort that facilitates a purely voluntary, from "the-ground-up" fish habitat conservation program driven by multiple partners for local and regionally-based fish habitat conservation.
- Codifies self-governing responsibilities and expectations of the partnerships for fish habitat conservation work and codifies a diverse board membership that includes representation of interests already serving on the Board plus representatives from various industries with an interest in fish and fish habitat conservation. A state fish and wildlife agency representative is designated as the Board Chair.
- The FWS is the designated agency for grant management of the National Fish Habitat Program, with technical and scientific support for the program provided by other federal agencies including the U.S. Department of Commerce and the U.S. Department of Agriculture.
- The non-federal match requirement for projects is not less than 50%, with the ability for in-kind, donations, and agreements with federal agencies to fulfill projects. The bill codifies NFHP at an authorized funding level of \$7.2 million annually. Appropriators would determine on an annual basis how much funding is available to the program, not to exceed \$7.2 million. The legislation allows funds for federal agency technical assistance and provides for appropriate Congressional oversight of partnership designations, projects, and use of funds.
- Provides important protections for the following: private property and water rights; state water laws and adjudication of water rights; tribal treaty rights; Department of Commerce authority; and, restrictions on federal acquisitions of water and property rights. Also includes protections of state fish and wildlife agencies' authorities to manage and regulate the fishing or hunting of fish and wildlife.

Provides 5 percent of funds annually appropriated for administration of the Act.

OYSTER REEF RESTORATION IN BACK SOUND, RACHEL CARSON RESERVE, NC

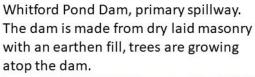
FY18 - \$49,833 Total - \$123,010

- Restore 0.11 acres of oyster reefs along eroding salt marsh
- Protects an additional 3+ acres of saltmarsh
- Timeframe: 7/18

SEAGRASS CONSERVATION MOORINGS, COECLES HARBOR, NY

FY18 - \$17,965 Total - \$138,188

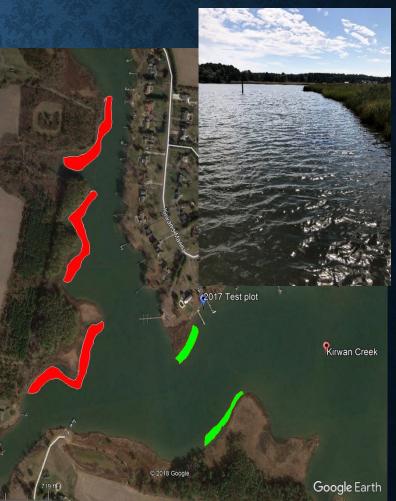
- Replace 6 traditional moorings with conservation moorings to protect seagrass in harbor
- Good visibility to inspire others to use conservation moorings
- Timeframe: 2019?



WHITFORD POND DAM RIVER RESTORATION DESIGN, MYSTIC RIVER, CT

FY18 - \$50,000 Total - \$321,000

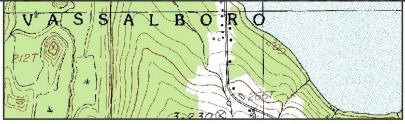
- First barrier on the Mystic River
- 1.2 miles fish passage for diadromous fish
- 26.4 acres of improved habitat
- River restoration with fish passage at two other barriers
 - 9.5 miles of reconnected river/floodplain
- Timeline: 2019 2020



RESTORATION OF SAV IN THE FRESHWATER AND MESOHALINE REGION OF THE CHESAPEAKE BAY, MD

FY18 - \$16,895 Total - \$46,913

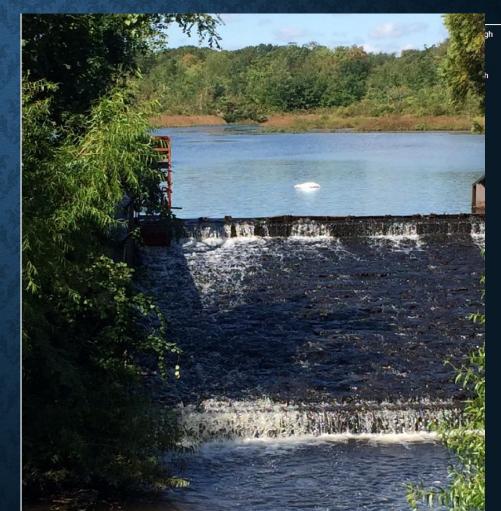
- 10-20 acres of SAV restoration through seed harvest and dispersal
- Timeframe: 2019 2020
- Part of Chesapeake Bay Program's goal of 185,000 acres of restoration



FISH PASSAGE, OUTLET STREAM/OUTLET DAM, ME

FY18 - \$50,000 Total - \$335,027

- Construction phase of a Denil fishway
- Last dam between the ocean (Sebasticook to Kennebec) and China Lake
- 4 other dams either with fish passage or being removed
- nursery habitat for ~800,000 alewives
- Timeline: design will be completed in 2019 and construction in 2020


The Maine Department of Transportation provides this publication for information only. Reliance upon this information is at user risk. It is subject to revision and may be incomplete depending upon changing conditions. The Department assumes no liability if injuries or damages result from this in formation. This map is not in tended to support emergency dispatch. 0.25 Miles

Date: 9/25/2018 Time: 1:28:41 PM

OLD MILL POND DAM FISH PASSAGE, WRECK POND BROOK, NJ

FY18 - \$50,000 Total - \$139,718

- Construction of a 60' long Alaska steep pass fishway
- Opens 0.9 miles of spawning habitat
- Declining number of spawning alewife in Wreck Pond Brook
- Builds on 2013 fish passage project at Wreck Pond (600 foot concrete box culvert)
- Timeline: summer/fall 2019

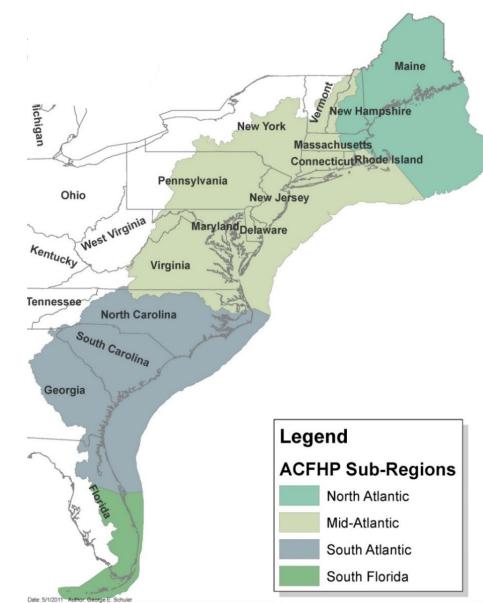
FINDING THE RIGHT MIX: DEVELOPING BEST PRACTICES FOR CEMENT/OYSTER COMPOSITION ARTIFICIAL REEFS FOR OYSTER AND FISH RECRUITMENT, FL

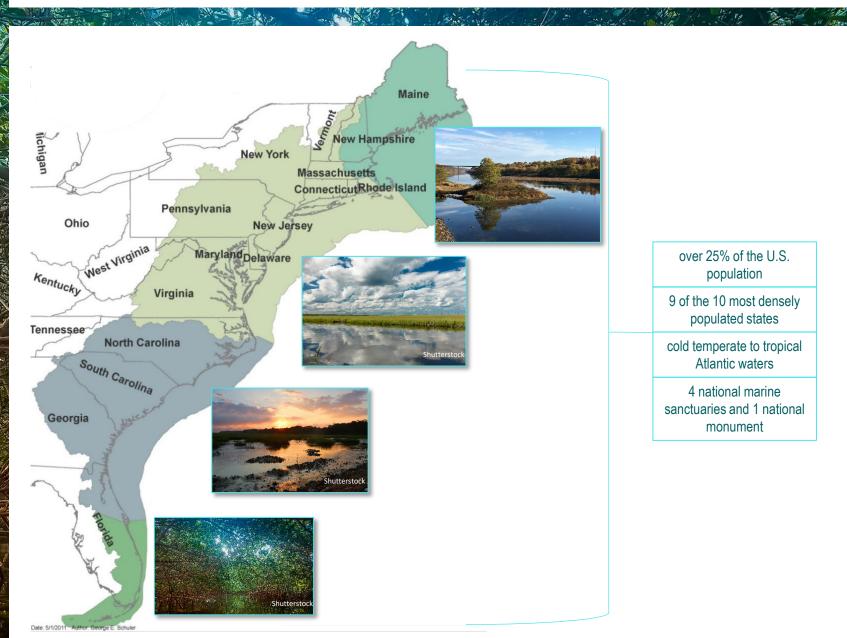
FY18 - \$48,091 Total - \$57,525

- Oyster reef structures
 - Cement/oyster coated scaffolding (derelict crab pots)
 - Planting Smooth cord grass,
 Spartina alterniflora behind
 behind 50%
- 120 meters of shoreline restored
- Timeline: 2019 monitoring for 2 years

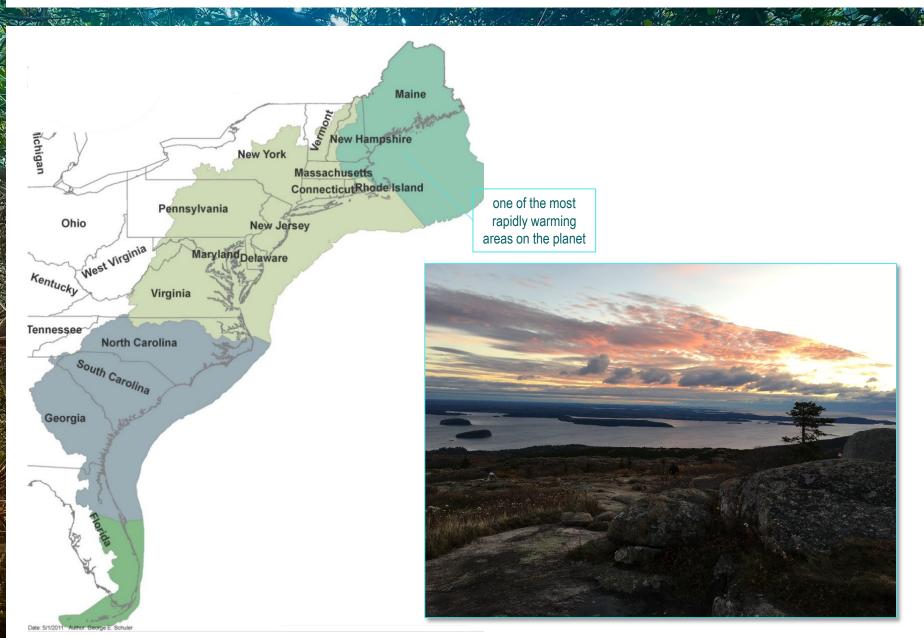
Year	Organization	State	Project Type	NFHAP Amt	Total Project Cost
2018	The Nature Conservancy	NJ	Fish Passage	\$50,000	\$7,193,000
2018	NY Department of Environmental	NY	Submerged Aquatic	\$17,965	\$138,188
2018	East Carolina University	NC	Oyster Reef	\$49,833	\$123,010
2017	Atlantic Salmon Federation	ME	Fish Passage	\$25,000	\$1,376,600
2017	North Carolina Coastal Federation	NC	Oyster Reef	\$27,519	\$77,236
2016	The Nature Conservancy	RI	Fish Passage	\$35,000	\$1,187,650
2015	Town of Surry	ME	Fish Passage	\$55,291	\$223,161
2015	The Nature Conservancy	MA	Fish Passage	\$50,000	\$758,363
2015	Cape Fear River Watch	NC	Riverine Bottom	\$30,000	\$314,511
2014	The Nature Conservancy	NH	Oyster Reef	\$40,525	\$141,300
2014	North Carolina Coastal Federation	NC	Oyster Reef and Tidal	\$24,657	\$61,013
2013	University of North Florida	FL	Oyster Reef and Tidal	\$31,437	\$77,574
2013	Cornell Cooperative Extension	NY	Submerged Aquatic	\$27,405	\$95,992
2012	MA Division of Marine Fisheries	MA	Submerged Aquatic	\$19,172	\$63,874
2012	James River Association	VA	Riverine Bottom	\$30,240	\$189,800
2012	Marine Resources Council	FL	Tidal Vegetation	\$50,000	\$124,375
2011	SC Department of Natural Resources	\mathbf{SC}	Tidal Vegetation	\$24,603	\$49,620
2011	Great Works Regional Land Trust	ME	Fish Passage	\$13,587	\$275,000
2010	SC Department of Natural Resources	SC	Fish Passage	\$40,000	\$70,000
2010	NY Department of Environmental	NY	Fish Passage and Riverine	\$30,000	\$80,000

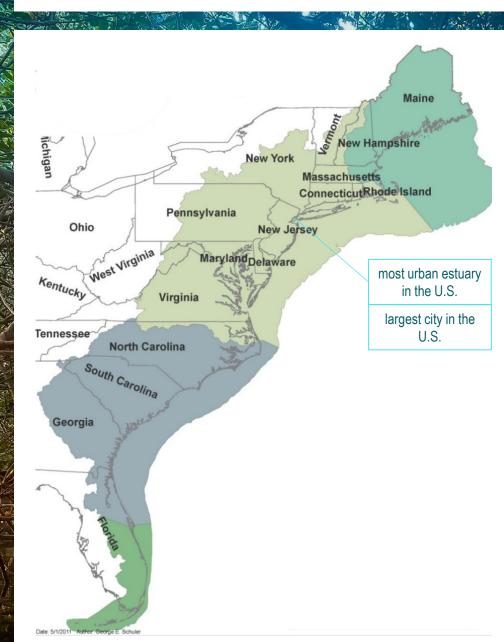
Atlantic Coastal Fish Habitat Partnership Update to the NFHP Board


National Fish Habitat Partnership Board Meeting March 20, 2019 Arlington, VA

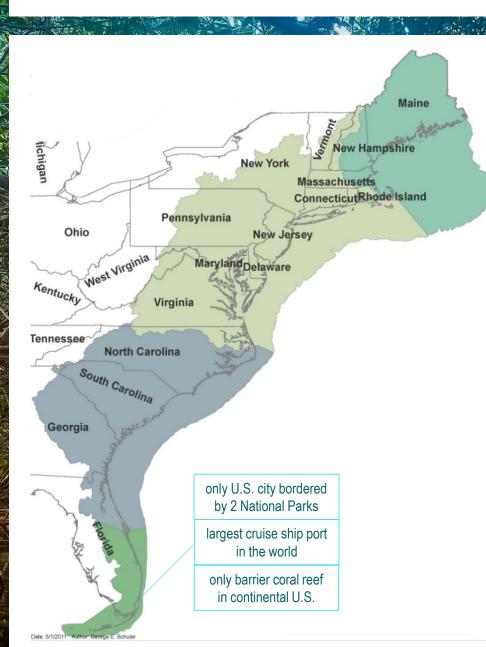

Atlantic Coastal Fish Habitat Partnership

<u>Mission</u>


To accelerate the conservation, protection, restoration, and enhancement of habitat for native Atlantic coastal, estuarine-dependent, and diadromous fishes through partnerships between federal, tribal, state, local, and other entities



2,944



199A

2,942

Making the Connection

From the headwaters to the continental shelf

Between fish and people

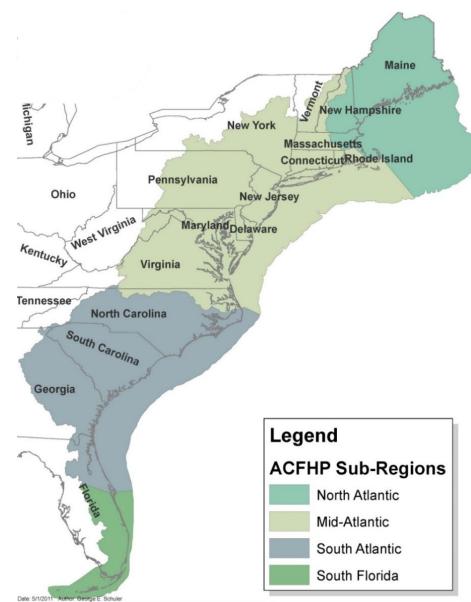

Among partners

Our Partners

3

Priority Habitats

North Atlantic


- Riverine bottom
- Shellfish beds
- SAV

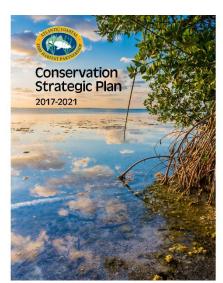
Mid- & South Atlantic

- Riverine bottom
- Shellfish beds
- SAV
- Tidal vegetation

South Florida

- SAV
- Tidal vegetation
- Coral and live/hard bottom

Guidance Documents


Guiding Documents

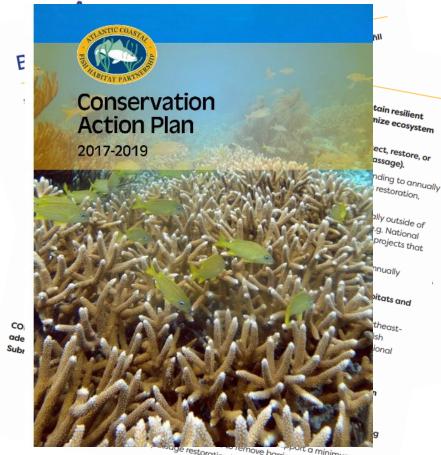
Guidance Documents

Conservation Strategic Plan

Background information

Habitats

- Habitat Threats
- Conservation Objectives
- Science & Data Objectives
- Outreach & Comm Objectives


Finance Objectives

Guidance Documents

Conservation Action Plan

- Objectives
- Strategies
- Actions

restoration by an ACFHP partner.

Melissa Laser Fish Habitat Conservation Award

- 2018 Eric Anderson, Palm Beach County Department of Environmental Resources Management
- 2017 Jeff Beal, FL Fish and Wildlife Conservation Commission
- 2016 Bonnie Bick and Jim Long, Mattawoman Watershed Society
- 2015 Deb Wilson, Nobleboro, ME Fish Habitat Activist

The Usual Suspects

- Facebook posts
- Newsletters
 - ~9 12 per year via email
 - ASMFC's Habitat Hotline Atlantic
 - Coastal FHP newsletters

The Usual Suspects

- Conferences
 - American Fisheries Society
 - Restore America's Estuaries/The Coastal Society Summits
 - New England Saltwater Fishing Show
- Meetings
 - ASMFC Policy Board/Habitat Committee/Artificial Reefs Committee
 - Chesapeake Bay River Herring Workshops
 - Chesapeake Bay Program GIT
 - South Atlantic Council Habitat AP

New Website

SIGN UP

RECENT NEWS

DONATE NOW

Star mer ANGE

Cher in

ABOUT US

The Atlantic Coastal Fish Habitat Partnership (ACFHP) is a coastwide partnership of fish habitat resource managers, scientists, and communications professionals from 33 different state, federal, tribat and non-governmental agencies who have established a commitment to work together for the benefit of aquatic resources.

ACFHP PRIORITY HABITATS BY SUBREGION

North Atlantic

- 💌 Riverine Bottom
- Submerged Aquatic Vegetation
- ▶ Marine and Esuarine Shellfish Beds

Mid-Atlantic

- 💌 Riverine Bottom
- Submerged Aquatic Vegetation
- Marine and Esuarine Shellfish Beds
- 💌 Tidal Vegetation

<u>Mission and Vision</u> <u>The ACFHP Region</u> <u>Our Team</u> <u>Guidance Documents</u> <u>The National Fish Habitat Partnership</u>

South Atlantic

- Riverine Bottom
- Submerged Aquatic Vegetation
- ▶ Marine and Esuarine Shellfish Beds
- Tidal Vegetation

South Florida

- > Submerged Aquatic Vegetation
- Coral and Live/Hardbottom
- Tidal Vegetation (mangrove)

SUBMERGED AQU SAV ON THE ATLANTIC COAS

Tidal fresh and oligohaline plant species are wild celery and Ceratophyllum demersum, co Mesohaline and polyhaline plant species are

and Ruppia maritima, widgeon grass.

WHY SAV IS IMPORTANT

Through photosynthesis SAV removes every worldwide. This is only 0.2% of the ocean flox effective at storing carbon than terrestrial fore

SAV roots also stabilize sediments and absort communities, but coastal property owners a Overall, SAV contributes to healthy fisheries a

Unfortunately, SAV is one of the most rapidly

THREATS TO SAV

ACFHP has determined the following are the

RIVERINE BOTTOM

Riverine bottoms act as spawning and nursing grounds for ma species migrate many miles upstream to spawn in calmer, safe life stages to mature before migrating downstream to marine er as food sources for many fish species.

Rivers transport freshwater to marine ecosystems, connecting

current diadromous populations are only a mere 1% of historical I

THREATS TO RIVERINE BOTTOM

ACFHP has determined the following are the greatest threats to

OUR RIVERINE WORK

On the Ground Projects

Exeter Dam, New Hampshire

Joose Creek, South Carolina

ing Branch Creek, South Carolini

Kritzer et al. 2016. The importance of benthic habitats for coastal fishe

Patten Stream, Maine

OUR SUBMERGED AQUATIC VEGETA

Sci

On the Ground Projects Massachusetts Massachusetts Grassy Flats, Florida

² Fouraurean et al. 2012. Seaarass ecosystems as a alobally significant ² Waycott et al. 2009. Accelerating loss of seagrasses across the glo

RIVERINE BOTTOM ON THE ATLANTIC CC

Riverine bottom habitat includes the benthos of higher gradie mainstem rivers, and low order coastal streams. It also includes marsh. Riverine bottom is an ACFHP priority habitat in the North

WHY RIVERINE BOTTOM IS IMPORTANT

ecosystems that rely on it. They also create a wide variety of hab Despite its importance, more than 80% of riverine habitat is inacc

IN Dres

WHY TIDAL VEGETATION IS IMPORTANT Tidal vegetation provides a wide variety of benefits to both species use these areas as nursing and spawning habitat. Th Tidal vegetation sequesters carbon at a rate 2 - 4 times gre

TIDAL VEGETATION

TIDAL VEGETATION ON THE ATLANTIC (

Estuarine emergent salt marsh is an environment in the coast

daily, while the high marsh floods only during storms and

flooded low marsh along much of the Atlantic coast. In additio

(Juncus spp.) species comprise much of the vegetative commi

Tidal freshwater marsh occurs where the average annual sal

These include: giant cordgrass (Sparting cynosuroides), sa

pickerelweed (Pontedaria cordata), blue flag (Iris virginica), and

The manarove ecological community includes four tree sp

supraticial shorelines in southern Florida. The four species four

(Avicennia germinans), white mangrove (Laguncularia racemosi

upstream of the salt front, where the river essentially backs up

mitigate climate change. Idal vegetation provides key ecosystem services, such as pr habitat for marine species, these areas also help to suppo

contribute \$1.6 billion in ecosystem services each year to the I Unfortunately, these areas are also facing significant threats, ar to 2009, a trend that is reflected on a global scale as well.²

THREATS TO TIDAL VEGETATION

OUR TIDAL VEGETATION WORK

On the Ground Projects North River Farms, North Carolina Back Sound North Carolina Long Branch Creek, South Carolin Indian River Lagoon, Florida irassy Flats, Florida

CORAL AND LIVE/HARD

CORAL AND LIVE/HARD BOTTOM ON THE

Reef-building corals are of the order Scleractinia. Coral accumula exceeds 18 °C (64 °F) throughout the year. Through symbiosis wi communities. A patch reef is an isolated, often circular, coral reef

Soft corals are species of the anthozoan order Alcyonacea. In cor skeleton (e.g. sea pens and sea fans). Anemones are chidarians surrounded by tentacles. They are found in soft sediments.

Live rock is calcareous rock that is spatially removed from the v bacteria, coralline algae, sponges, worms, crustaceans, and other

Macroalgae are large marine multi-cellular macroscopic algae (sr ranging from inshore to offshore.

WHY CORAL REEFS ARE IMPORTANT

Known as the rainforests of the sea, coral reefs provide habitat to to their ecological benefits, they protect coastal communities ag sources of medicine.

As a tourist attraction for fishers and divers, the coral reef tract i responsible for supporting over 61,000 full and part-time jobs.²

Florida's coral reefs, however, are dissolving at a faster rate than showed up only in 2014.3

THREATS TO CORAL AND LIVE/HARD BOT

ACFHP has determined the following are the greatest threats to c...

- 10	Dredging and coa
×	Water quality deg
×	Vessel operation
×	Contamination of
×	Invasive species a
	Ollowsky shows a

OUR CORAL AND LIVE/HARD BOTTOM WORK

Science & Data Projects

Species-Habitat Matrix Assessment of Existing Information

¹ https://www.icriforum.org/about-coral-reefs/benefits-coral-reefs ² Giliam D. 2013. A Quick Guide to SE Florida's Coral Reefs. Southeast Coral Reef Initiative. NO4 https://floridadep.gov/sites/default/files/SEFCRI-Quick-Guide.pdf

MARINE AND ESTUARINE SHELLFISH BEDS

MARINE AND ESTUARINE SHELLFISH BEDS ON THE ATLANTIC COAST

Oyster aggregations and reefs are structures formed by the Eastern oyster (Crassostrea virginica) that provide the dominant structural component of the benthos, and whose accumulated mass provides significant vertical relief (> 0.5 m).

Scallop beds are areas of dense aggregations of scallops on the ocean floor. Common Atlantic coast species include: (1) the large Atlantic scallop (Placopecter magel(anicus), which ranges from Newfoundland to North Carolina; and (2) the medium-sized Atlantic calico scallop (Argopecter irradians), which occurs from Cape Cod to Florida, as well as in the Gulf of Mexico.

Hard clam beds are dense aggregations of hard clam (Mercenaria mercenaria) found in the subtidal regions of bays and estuaries to approximately 15 m in depth. Clams are generally found in mud flats and firm bottom areas consisting of sand or shell fragments.

Shells of dead mollusks sometimes accumulate in sufficient quantities to provide important habitat as well. Accumulations of Eastern ovster shells are a common feature in the intertidal zones of many southern estuaries

WHY MARINE AND ESTUARINE SHELLFISH BEDS ARE IMPORTANT

Shellfish serve a variety of functions, benefitting both the ecosystem and people alike. They are great for improving water quality. Did you know that a single ovster is capable of filtering 50 gallons of water each day? By doing so, they remove excess nutrients, contaminants, and suspended sediments from the water column.

Shellfish also provide habitat and food for estuarine species. Their structure is especially important for nursery species in need of shelter from larger predators. Their sturdy reefs stabilize the sediments and reduce the threat of coastal erosion. For this reason, they are great buffers against storm surge, which is an ever-increasing threat along the Atlantic coast as sea levels rise and storms intensify.

Shellfish, and especially oysters, also contribute millions of dollars to the East Coast's economy. Some even say New York City was built on oysters. They have been a staple food source on the Atlantic coast since before Europeans arrived, and are still considered a delicacy today

Despite their importance, oyster reefs are on the decline. According to The Nature Conservancy, 85% have been lost globally, making them the most severely impacted habitat on the planet. In the Chesapeake Bay alone, coverage is less than 1% of historic mass

THREATS TO MARINE AND ESTUARINE SHELLFISH BEDS

ACFHP has determined the following are the greatest threats to marine and estuarine shellfish beds in at least one subregion

- Water quality degradation and eutrophication Sedimentation Dredging and coastal maintenance Consumptive water withdrawal Invasive species and disease Vessel operation impacts Contamination of water and sediments
- Climate change

OUR SHELLFISH BED WORK

Science & Data Projects

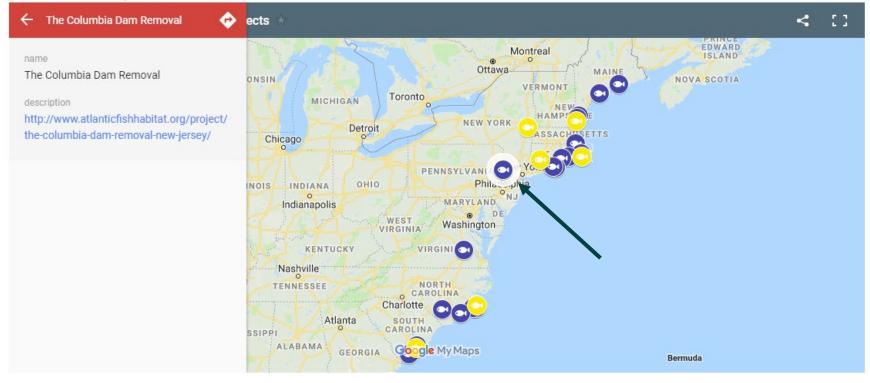
Muehllehner et al. 2016. Dynamics of carbonate chemistry, production 70' 661 - 688

Intracoastal Waterway, South Carolin

On the Ground Projects

Str myer ANGES

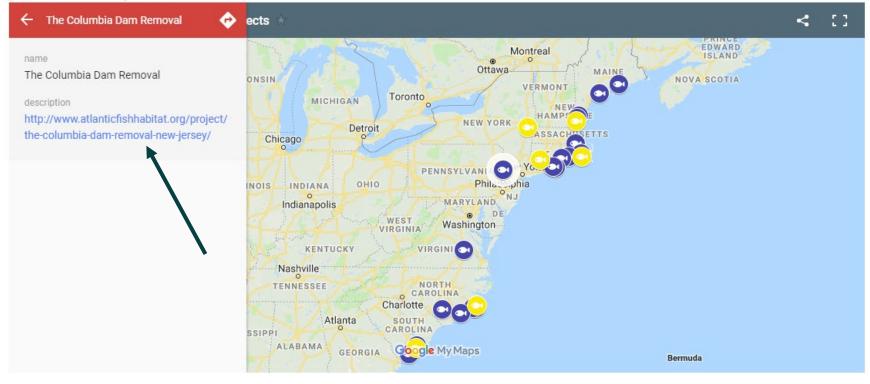
Partners We've Funded


- The Nature Conservancy
- NY Department of Environmental Conservat
 East Carolina University
- Atlantic Salmon Federation
- North Carolina Coastal Federation
 Town of Surry, Maine
- Cape Fear River Watch
- University of North Florida
- Cornell Cooperative Extension
- MA Division of Marine Fisheries
 James River Association
- Marine Resources Council
- SC Department of Natural Resources
- Great Works Regional Land Trust

ON THE GROUND PROJECTS

Click on a fish to learn more about a particular conservation project. Purple icons represent ACFHP-funded projects, and yellow icons represent projects endorsed by ACFHP.

Sand Loud



ON THE GROUND PROJECTS

Click on a fish to learn more about a particular conservation project. Purple icons represent ACFHP-funded projects, and yellow icons represent projects endorsed by ACFHP.

Sand and

2.9AD.

and the second

THE COLUMBIA DAM REMOVAL, NEW JERSEY

click photo to view photo gallery

Columbia Dam Removal Factsheet

NJ Department of Environmental Protection Columbia Dam Removal factsheet

Text and photos provided by The Nature Conservancy.

PRESS ARTICLES

- Princeton Hydro summer 2018 article
- Princeton Hydro summer 2018 article #2
- New Jersey Herald winter 2018 article
- WFMZ 69 News summer 2018 article
- New Jersey DEP summer 2018 press release

Knowlton Township, New Jersey

Funded in FY2018 through the National Fish Habitat Action Plan.

The Nature Conservancy is working with partners to remove the Columbia Dam on the Paulins Kill. This project will open approximately 20 miles of streams to migratory fish, including American shad, river herring, sea lamprey, and American eel. It will also improve in-stream habitat for resident fishes and macroinvertebrates, and improve water quality in the former impoundment. The Columbia Dam is located less than 0.25 miles upstream of the confluence with the Delaware River, and is currently a complete barrier to fish passage.

GET INVOLVED

There are a variety of ways to help us achieve our mission. If you're interested in conserving fish habitat along the Atlantic coast, see below for ways you can make a difference!

Meetings Donate Stay in Touch Funding Opportunities Project Endorsement Melissa Laser Fish Habitat Conservation Award Join Us

DIRECTLY TO ACFHP VIA BEYOND THE POND

You can donate to the Atlantic Coastal Fish Habitat Partnership's general fund by clicking here and selecting 'Atlantic Coastal Fish Habitat Partnership' from the drop down menu under 'Please Select a Cause.' Alternatively, you can visit <u>www.beyondthepondusa.com</u> and click the 'Donate Now' button at the top of the page to take you to the drop down menu (be sure to select 'Atlantic Coastal Fish Habitat Partnership').

If there's a particular project that you're interested in supporting, contact us at LHavel@asmfc.org

TO OUR NATIONAL CAUSE VIA AMAZONSMILE

You shop. Amazon gives.

Looking for another way to support the conservation of fish habitat in the ACFHP region and nationwide? Your purchases through online retailer Amazon can benefit ACFHP and the rest of the Fish Habitat Partnerships through the National Fish Habitat Fund (<u>Beyond the Pond</u>).

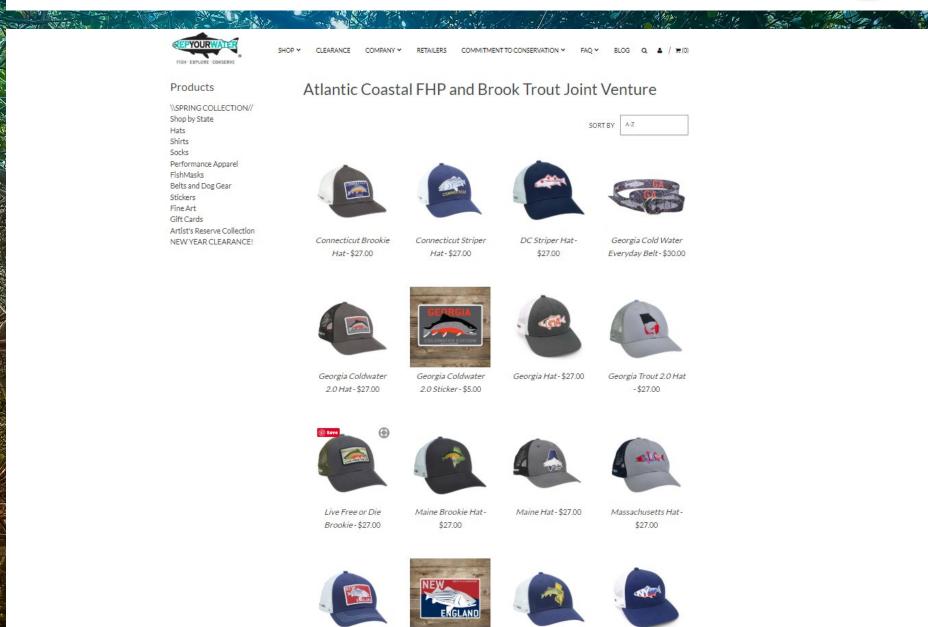
To shop and contribute, you can visit http://smile.amazon.com and select the National Fish Habitat Fund from the charity list, or click this link directly: http://smile.amazon.com/ch/47-2547128.

THROUGH OUR COLLABORATION WITH REPYOURWATER

ACFHP and the <u>Eastern Brook Trout Joint Venture</u> have teamed up with <u>RepYourWater</u> to support fish habitat conservation in freshwater and offshore fish habitats on the east coast. **Purchase any of the select merchandise <u>here</u>, and a portion of the proceeds will go directly to our two Fish Habitat Partnerships.</u> Got photos in your gear? Be sure to tag #attanticfhp and #repyourwater on social media!**

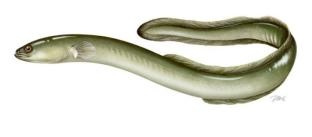
Your donation will not only benefit a great number of species and their habitats, but a large population of

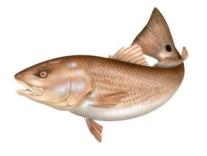
human users as well. If you enjoy fishing, kayaking, or watching wildlife and want to be a part of aquatic habitat solutions, then help ACFHP maintain healthy fish habitat and make the connection – from headwater streams out to the Atlantic Ocean, between people and the environment, and among our partners and supporters.


SHOP SELECT MERCHANDISE

-

AN F


Species-Habitat Matrix Tool


- A tool for evaluating the relative importance of a specific habitat type to a given life history stage for an individual species
- Assess importance of habitat in terms of:
 - Shelter
 - Direct trophic links
 - Spawning
 - Nurseries

131 different species across four regions

- All ASMFC-managed species
- All Council-managed species
- All other native diadromous species
- Select state-managed and unmanaged species
- Not included: bivalves and species without a marine or estuarine life stage

Science and Data

Life stages

- Eggs Larvae
- Juvenile/Young of Year (YOY)
- **Adults**
- Spawning Adults
 - Only if fundamentally different from adult, nonspawning habitat

Science and Data

Habitats

- Marine & estuarine shellfish beds
 - oyster aggregations/reef
 - Dead shell accumulations
 - Scallop beds
 - Hard clam beds

Habitats

- Coral and live/hard bottom
 - Coral reefs
 - Patch reef, soft corals, or anemone
 - \circ Live rock

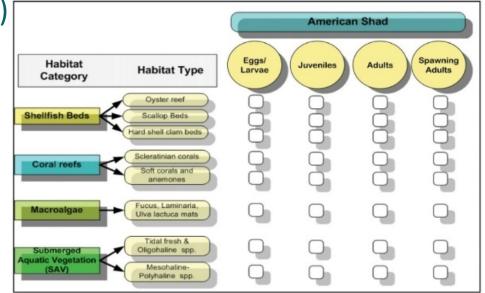
- Macroalgae
 - Fucus spp.
 - Laminaria spp.
 - o Ulva lactuca

- Submerged aquatic vegetation
 - Tidal fresh & oligohaline spp.
 - Mesohaline & polyhaline spp.

- Tidal vegetation
 - Estuarine emergent marsh
 - Tidal freshwater marsh
 - Mangrove

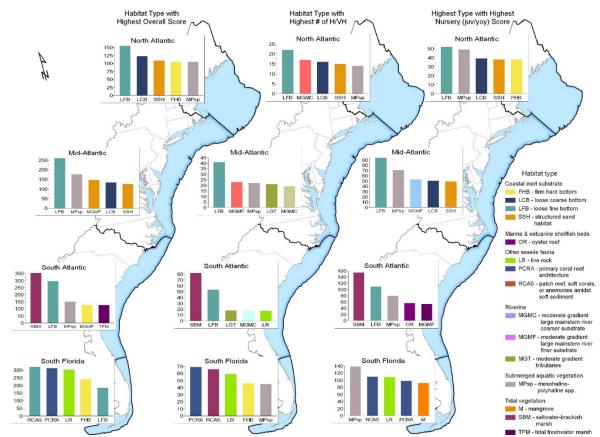
- Unvegetated coastal bottom
 - Loose fine bottom
 - Loose coarse bottom
 - Firm hard bottom
 - Structured sand habitat

- Riverine bottom
 - Higher gradient headwater tributaries
 - Lower gradient tributaries
 - Higher gradient large mainstem rivers
 - Lower gradient large mainstem rivers
 - Low order coastal streams
 - Non-tidal freshwater mussel beds
 - Coastal headwater ponds
 - Non-tidal freshwater marsh



Scoring and analysis

Ranks:


- Very high (4): essential contributor
- High (3.5): primary habitat
- Moderate (2): 1 of many habitats used
- Low (1): used incidentally
- Unknown (to science)
- Blank: not present

Publication

- BioScience April 2016
- Kritzer et al.

Online Query Database

Search	Q	l l						MAKING TH
all Hog	Но	ome	About Us	Priority Ha	bitats	0	ur Work	Get In
	SPEC	IES-H	IABITAT MAT	RIX				
	terms of thei	ir value to a nu	umber of selected fish and inverte	to evaluate the relative importan tebrate species. Specifically, the N es. The goal is to provide an index	Aatrix evaluates the impo	ortance of c	different habitat type	
	water, proces	ssing nutrients	s, securing sediments, maintainin	ortant functions, beyond the ones ng dissolved oxygen levels, and c er to keep the matrix and analyse:	other ecosystem function	is are critica	1 C C C C C C C C C C C C C C C C C C C	g
		to the <u>Species</u>	<u>s-Habitat Matrix Report</u> for impor	rtant information on how the data	were gathered, how to i	nterpret res	sults, and qualifiers a	nd
	exclusions.					_		
				DOWNER	OAD RESULTS TO CSV	DOW		
				DOWNER	UAD RESULTS TO CSV	DOW	NLOAD ALL TO C	SV
	Species 1	Perion	Habitat Category					5V
	Species 1	Region 🏦	Habitat Category	Habitat Type	Life Stage	Rank 1	Numeric Rank	SV
	Species 1	Region 1	Habitat Category					57
	Species	Region	Habitat Category		Life Stage			5V
				Habitat Type	Life Stage	Rank †↓	Numeric Rank ↑	5V
	Alewife	Mid Atlantic	Coastal Inert Substrates	Habitat Type 11	Life Stage	Rank 1	Numeric Rank	5V
	Alewife	Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates	Habitat Type 11 Firm Hard Bottom (boulders to embed) Firm Hard Bottom (boulders to embed)	Life Stage	Rank 11	Numeric Rank 11	5V
	Alewife Alewife Alewife	Mid Atlantic Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates	Habitat Type 11 Firm Hard Bottom (boulders to embed) Firm Hard Bottom (boulders to embed) Loose Coarse Bottom (gravel to cobble)	Life Stage	Rank 11	Numeric Rank 11 200 200 200	5V
	Alewife Alewife Alewife Alewife	Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates	Habitat Type 11 Firm Hard Bottom (boulders to embedic Firm Hard Bottom (boulders to embedic Loose Coarse Bottom (gravet to cobble Loose Coarse Bottom (gravet to cobble	Life Stage	Rank 11 Medium Medium Medium Medium	Numeric Rank 200 200 200 200	57
	Alewife Alewife Alewife Alewife Alewife	Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates	Habitat Type 11 Firm Hard Bottom (boulders to embedid Firm Hard Bottom (boulders to embedid Loose Coarse Bottom (gravet to cobble Loose Coarse Bottom (gravet to cobble Loose Fine Bottom (mud. silt, and sand	Life Stage	Rank 11 Medium Medium Medium Low	Numeric Rank 200 200 200 200 200 200	5V
	Alewife Alewife Alewife Alewife Alewife Alewife	Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates	Habitat Type 11 Firm Hard Bottom (boulders to embedic Firm Hard Bottom (boulders to embedic Loose Coarse Bottom (gravel to cobble Loose Coarse Bottom (gravel to cobble Loose Fine Bottom (mud. sitt. and sand Loose Fine Bottom (mud. sitt. and sand	Life Stage	Rank 11 Medium Medium Medium Medium Low Low	Numeric Rank 11 200 200 200 200 200 100 100	5V
	Alewife Alewife Alewife Alewife Alewife Alewife Alewife	Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates	Habitat Type 11 Firm Hard Bottom (boulders to embedi Firm Hard Bottom (boulders to embedi Loose Coarse Bottom (gravel to cobble Loose Coarse Bottom (gravel to cobble Loose Fine Bottom (mud. sitt, and sand Loose Fine Bottom (mud. sitt, and sand Loose Fine Bottom (mud. sitt, and sand Structured Sand (shoals, capes, offshor)	Life Stage	Rank 11 Medium Medium Medium Medium Low Low Medium	Numeric Rank 1 2.00 200 2.00 200 2.00 200 2.00 200 2.00 200 2.00 200 2.00 200 2.00 200 2.00 200 2.00 200	5
	Alewife Alewife Alewife Alewife Alewife Alewife Alewife	Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Riverine	Habitat Type 11 Firm Hard Bottom (boulders to embedd) Firm Hard Bottom (boulders to embedd) Loose Coarse Bottom (gravel to cobble) Loose Coarse Bottom (gravel to cobble) Loose Fine Bottom (mud. silt, and sand Loose Fine Bottom (mud. silt, and sand Structured Sand (shoals, capes, offshor) Coastal Headwater Pond	Life Stage	Rank 11 Medium Medium Medium Low Low Low Hedium High	Numeric Rank 1 2.00 2 2.00 2 2.00 2 1.00 2 2.00 2 3.00 2 3.00 2	5V
	Alewife Alewife Alewife Alewife Alewife Alewife Alewife	Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Riverine Riverine	Habitat Type 11 Firm Hard Bottom (boulders to embed) Firm Hard Bottom (boulders to embed) Loose Coarse Bottom (gravel to cobble) Loose Fine Bottom (mud. silt and sand Loose Fine Bottom (mud. silt and sand Structured Sand (shoals, capes, offshor) Coastal Headwater Pond Coastal Headwater Pond	Life Stage	Rank 11 Medium Medium Medium Medium Low Low Hedium High Medium High Medium Medi	Numeric Rank 1 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 300 2 200 2 200 2 200 2 350 2 200 2	5V
	Alewife Alewife Alewife Alewife Alewife Alewife Alewife Alewife	Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Riverine Riverine Riverine	Habitat Type 11 Firm Hard Bottom (boulders to embedd) Firm Hard Bottom (boulders to embedd) Loose Coarse Bottom (gravet to cobble Loose Fine Bottom (mud. sitt, and sand Loose Fine Bottom (mud. sitt, and sand Loose Fine Bottom (mud. sitt, and sand Structured Sand (shoals, capes, offshore) Coastal Headwater Pond Coastal Headwater Pond	Life Stage	Rank 1 Medium Medium Medium Low Low High High	Numeric Rank 1 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 300 2 200 2 200 2 200 2 350 2 360 3	5V
	Alewife Alewife Alewife Alewife Alewife Alewife Alewife Alewife Alewife Alewife	Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Riverine Riverine Riverine Riverine	Habitat Type 11 Firm Hard Bottom (boulders to embedid Firm Hard Bottom (boulders to embedid Loose Coarse Bottom (gravet to cobble Loose Fine Bottom (gravet to cobble Loose Fine Bottom (mud. sitt and sand Loose Fine Bottom (mud. sitt and sand Structured Sand (shoals, capes, offshor Coastal Headwater Pond Coastal Headwater Pond Low Gradient Coastal Stream	Life Stage 1	Rank 11	Numeric Rank 1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3.50 2.00 3.50 3.50 1.00 1.00	5V
	Alewife Alewife Alewife Alewife Alewife Alewife Alewife Alewife Alewife Alewife Alewife Alewife	Mid Atlantic Mid Atlantic	Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Coastal Inert Substrates Riverine Riverine Riverine Riverine	Habitat Type 11 Firm Hard Bottom (boulders to embedid Firm Hard Bottom (boulders to embedid Loose Coarse Bottom (gravet to cobble Loose Fine Bottom (gravet to cobble Loose Fine Bottom (mud. sitt, and sand Loose Fine Bottom (mud. sitt, and sand Structured Sand (shoals, capes, offshor Coastal Headwater Pond Coastal Headwater Pond Low Gradient Coastal Stream Low Gradient Coastal Stream	Life Stage 1 [Rank 1 Medium Medium Medium Low Low High High	Numeric Rank 1 2.00 2.00 2.00 2.00 1.00 2.00 3.50 2.00 3.50 3.50	5V

Species	↑↓ F	Region	$\uparrow \downarrow$	Habitat Category	Habitat Type ↑↓	Life Stage ↑↓	Rank ↑↓	Numeric Rank $\uparrow\downarrow$	
		* South Atlantic * South Florida		× Submerged Aquatic Vegetation		× Egg & Larva × Juvenile & Young-of-Year			
American Eel	Sc	outh Atlantic		Submerged Aquatic Vegetation	Mesohaline & Polyhaline Species	Juvenile & Young-of-Year	Medium	2.00	
American Eel	Sc	outh Atlantic		Submerged Aquatic Vegetation	Tidal Fresh & Oligohaline Species	Juvenile & Young-of-Year	Medium	2.00	
American Shad	Sc	outh Atlantic		Submerged Aquatic Vegetation	Mesohaline & Polyhaline Species	Juvenile & Young-of-Year	Medium	2.00	
American Shad	Sc	outh Atlantic		Submerged Aquatic Vegetation	Tidal Fresh & Oligohaline Species	Juvenile & Young-of-Year	High	3.50	
Atlantic Croaker	Sc	outh Atlantic		Submerged Aquatic Vegetation	Mesohaline & Polyhaline Species	Juvenile & Young-of-Year	Medium	2.00	
Atlantic Croaker	Sc	outh Atlantic		Submerged Aquatic Vegetation	Tidal Fresh & Oligohaline Species	Juvenile & Young-of-Year	Medium	2.00	
Atlantic Menhaden	Sc	outh Atlantic		Submerged Aquatic Vegetation	Mesohaline & Polyhaline Species	Egg & Larva	Low	1.00	
Atlantic Menhaden	Sc	outh Atlantic		Submerged Aquatic Vegetation	Mesohaline & Polyhaline Species	Juvenile & Young-of-Year	Low	1.00	
Atlantic Menhaden	Sc	outh Atlantic		Submerged Aquatic Vegetation	Tidal Fresh & Oligohaline Species	Egg & Larva	Low	1.00	
Atlantic Menhaden	Sc	outh Atlantic		Submerged Aquatic Vegetation	Tidal Fresh & Oligohaline Species	Juvenile & Young-of-Year	Low	1.00	
Atlantic Sharpnose Shark	Sc	outh Atlantic		Submerged Aquatic Vegetation	Mesohaline & Polyhaline Species	Juvenile & Young-of-Year	Low	1.00	
Atlantic Sharpnose Shark	Sc	outh Atlantic		Submerged Aquatic Vegetation	Tidal Fresh & Oligohaline Species	Juvenile & Young-of-Year	Low	1.00	
Atlantic Silverside	Sc	outh Atlantic		Submerged Aquatic Vegetation	Mesohaline & Polyhaline Species	Egg & Larva	High	3.50	
Atlantic Silverside	Sc	outh Atlantic		Submerged Aquatic Vegetation	Mesohaline & Polyhaline Species	Juvenile & Young-of-Year	Medium	2.00	-

180.5

-

Hab in the MAB

Characterizing black sea bass habitat in the Mid-Atlantic Bight

Objective

To improve our understanding of the relationship between black sea bass abundance and habitat characteristics

Expected Outcome

Understand the influence of habitat on fisheries productivity and recruitment, and better manage the fishery.

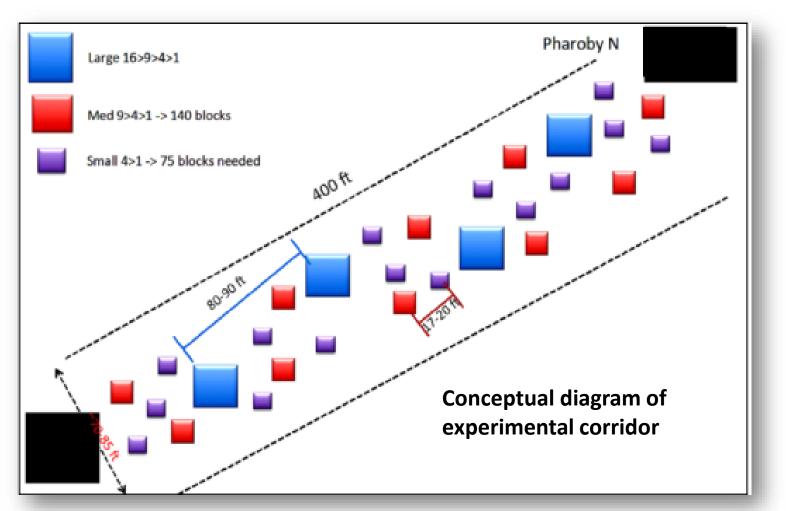
Hab in the MAB

Characterizing black sea bass habitat in the Mid-Atlantic Bight

- Determine the preference of BSB for particular habitats by assessing their abundance, size structure, and feeding ecology within natural and artificial reefs
- Improve the understanding of the habitat characteristics of natural and artificial reefs
- Determine if reduced fragmentation and increased connectivity of habitats increases fish recruitment

Video Surveys

Images courtesy of B. Stevens, UMES

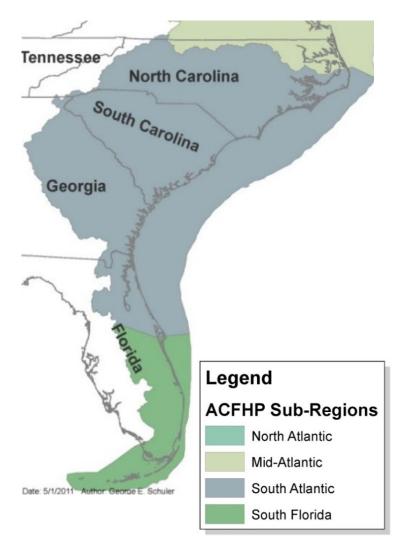

Stable Isotope Analysis & Aging

Images courtesy of B. Stevens, UMES

Habitat Connectivity

Southeast Fish Habitat Conservation Mapping

Objective


To spatially prioritize fish habitat protection and restoration sites through GIS mapping and analyses for the southeast region of the U.S. from NC to FL for ACFHP on-the-ground conservation prioritization

Expected Outcome

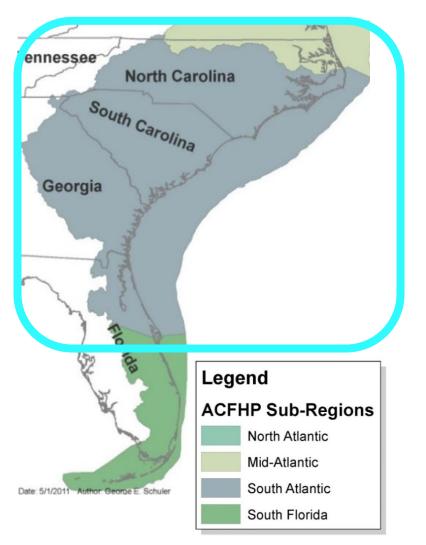
To help ACFHP and partners identify where best to invest efforts and future project funds.

<u>Scope</u>

Mid- & South Atlantic

- Riverine bottom
- Shellfish beds
- SAV

Sand and


Tidal vegetation

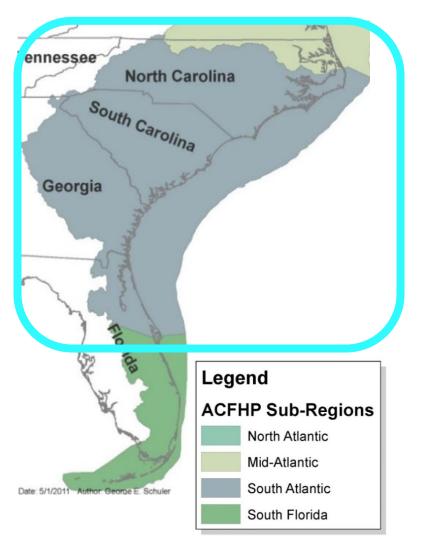
South Florida

- SAV
- Tidal vegetation
- Coral and live/hard bottom

<u>Scope</u>

Northern Scenario

- Riverine bottom
- Shellfish beds
- SAV


1 Bandal and

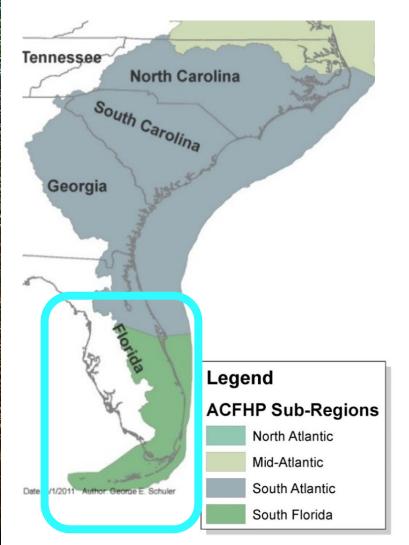
Tidal vegetation

Diadromous assessment

<u>Scope</u>

Northern Scenario

- Riverine bottom
- Shellfish beds
- SAV


1 Band - and -

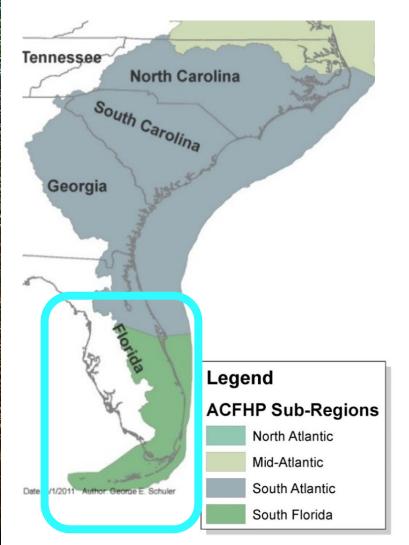
• Tidal vegetation

Estuarine assessment

<u>Scope</u>

Southern Scenario

• SAV


Sanda ande

- Tidal vegetation
- Coral and live/hard bottom

<u>Scope</u>

South Florida

• SAV

1 Sand Lande

- Tidal vegetation
- Coral and live/hard bottom

<u>Scope</u>

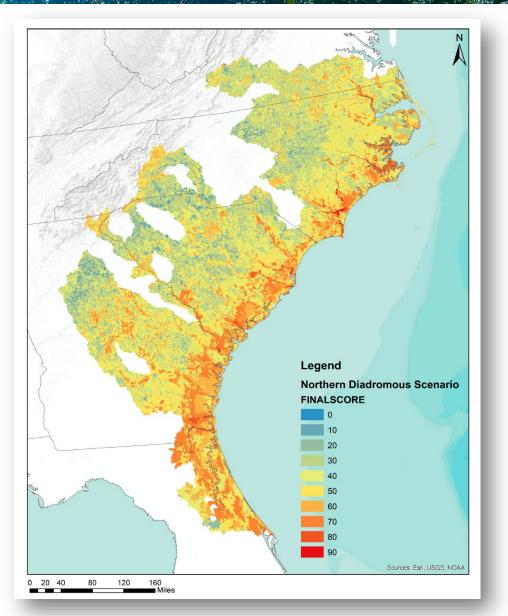
- Northern diadromous scenario
 - NHD catchment in watersheds with diadromous fish or drained into them
- Northern and southern estuarine scenario
 0 1-km² hexagon
- Southern coastal scenario
 varied

Metrics and scoring

- Science & Data Committee webinar June 2017
- Science & Data Committee meeting Sept 2017
 - Metrics that covered the entire region
 - Metrics that most impact fish habitat
 - Tried to not be redundant
- Steering Committee meeting Oct 2017 & May 2018
- Science & Data committee webinar June 2018

Diadromous Assessment

Variable	Measurement	Metric			
Impervious surface	area above the catchment that	10 points if <5% cumulative			
Impervious surface	is impervious surface	impervious surface			
		10 points if catchment is ranked			
Point source pollution	Density of sites in catchment	in the lowest 25% for pollution			
		(least polluted)			
	% of catchment covered by	10 points if the catchment is			
Non-point source pollution	agriculture	ranked in the lowest 25% for			
	agriculture	pollution (least polluted)			
	% of floodplain area with	10 points if the catchment is			
Riparian buffers	natural land cover	ranked in the top 25% for			
	flatural land cover	natural coverage			
		10 points if the catchment has			
Potential for species access	Diadromous species presence	at least one diadromous species			
		present			
	Volume of all reservoirs per unit	10 points if the catchment is			
Flow alteration	area of watershed	ranks in the lowest 25% for			
	area or watershed	volume			
		10 points if the catchment had			
		zero dams downstream to the ocean. 10 points if the catchment is ranked in the lowest 25% for fragmentation (least amount of crossings and			
	Density of road crossings +				
Fragmentation	dams in catchment				
	danis in catchinent				
		dams).			
	Sturgeon Critical Habitat	10 points if the catchment is			
Sturgeon Critical Habitat	designation	designated Atlantic sturgeon			
	designation	Critical Habitat			

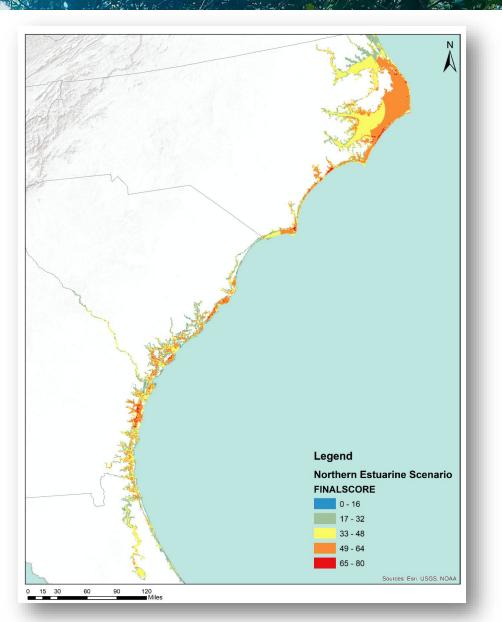

<u>Flow</u>

Volume/sqkm of storage in watershed above catchment

<u>Diadromous</u> Assessment

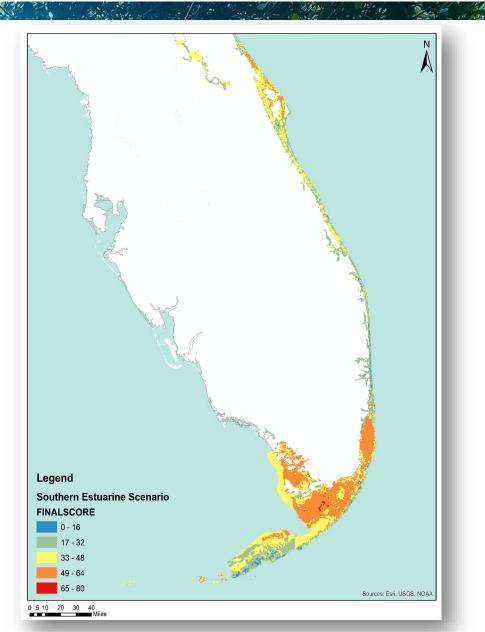
Estuarine Assessment

Variable	Measurement	Metric			
Seagrass and oyster reef habitat	% of polygon covered by	10 points if the polygon ranks in			
Seagrass and Oyster reer habitat	seagrass or oyster reef	the top 25% for coverage			
Wetland habitat	% of polygon covered by	10 points if the polygon ranks in			
Wetland habitat	wetlands	the top 25% for coverage			
Estuarine-marsh-water edge	Length of estuarine-marsh-	10 points if the polygon ranks in			
Estuarme-marsh-water euge	water edge in the polygon	the top 25% for length			
Proximity to protected habitat	Distance to inlet (an HAPC in	10 points if the polygon is			
Proximity to protected habitat	the South Atlantic)	within ½ km of an inlet			
	Distance from marinas and	10 points for the 25% of			
Proximity to development		polygons farthest from marinas			
	ports	and ports			
	Total # of NPDS permit sites in	10 points for the 25% of			
Water quality	the inlet	polygons with the least number			
	the inlet	of NPDS sites/inet			
	Length of hardened shoreline	10 points for the 25% of			
Hardened shoreline	within the polygon	polygons with the least amount			
	within the polygon	of hardened shoreline			
Upbitat fragmontation	Linear ft. of causeway within a	10 points if the polygon has 0 ft.			
Habitat fragmentation	polygon	of causeways			


Wetlands

- Maria

10 5



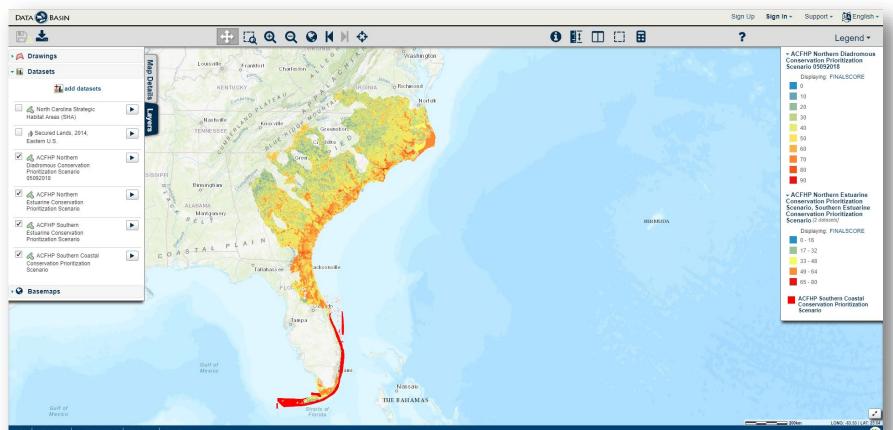
<u>Northern</u> <u>Estuarine</u> <u>Assessment</u>

<u>Southern</u> <u>Estuarine</u> Assessment

Coastal Assessment

- Decided all coral habitat was in need of conservation, regardless of quality
- Due to slow growth and immediate threats to S. FL reefs (bleaching, pollution, disease, burial)
- FWC Unified Reef Map
- Coral reefs and hard bottom HAPCs

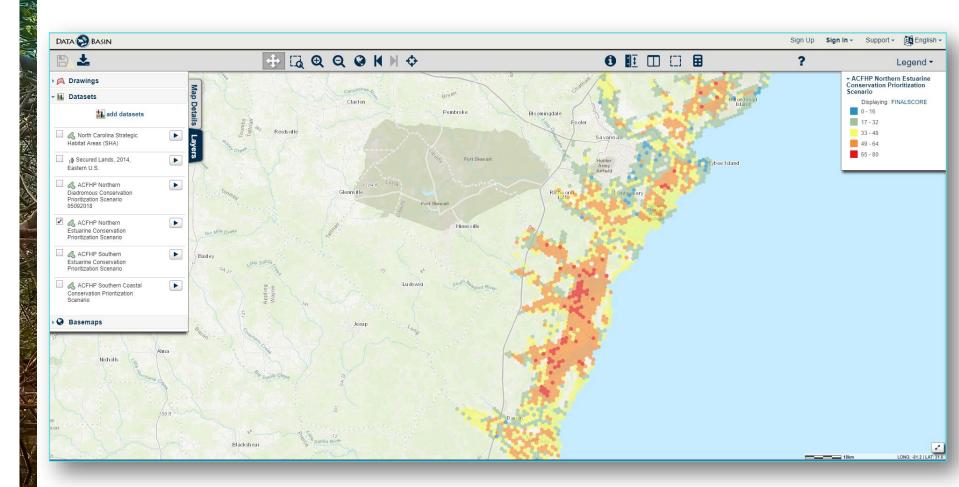
<u>Coastal</u> <u>Assessment</u>



Databasin

C311 -3801

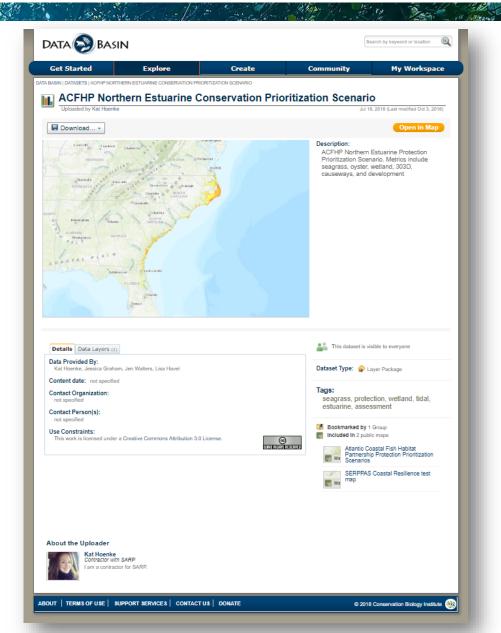
\$ N' 01


Same

2,942

Databasin

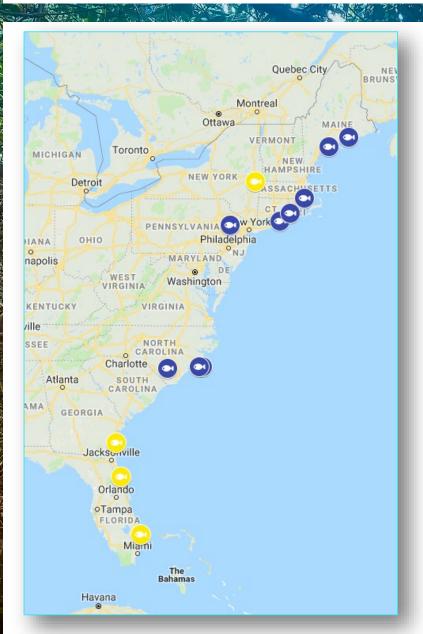
Str me



Bart and

Databasin

A Los State ANOF

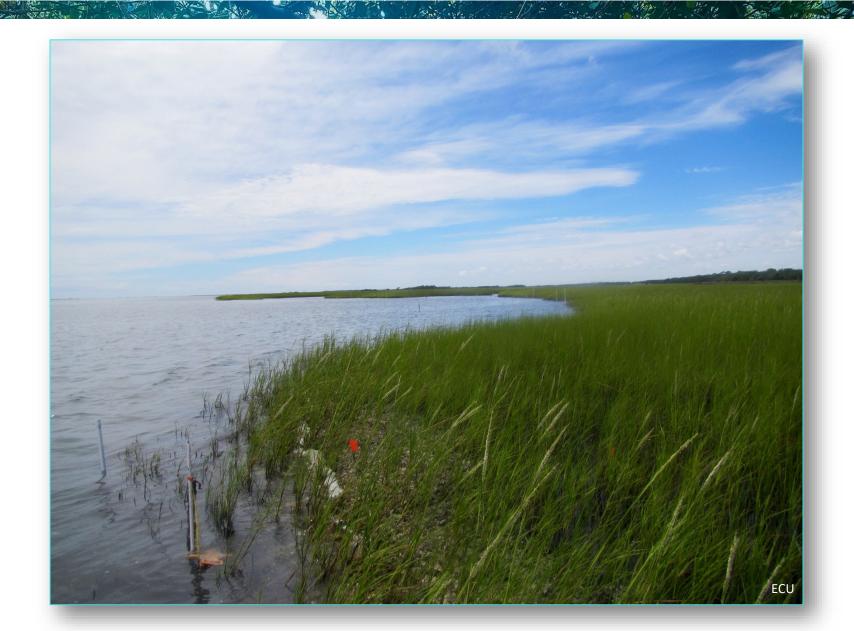


Next steps

- Finalize the report
- Create maps for each metric
- Announce it
- Start work on northeast assessment
- Improve on southeast assessment

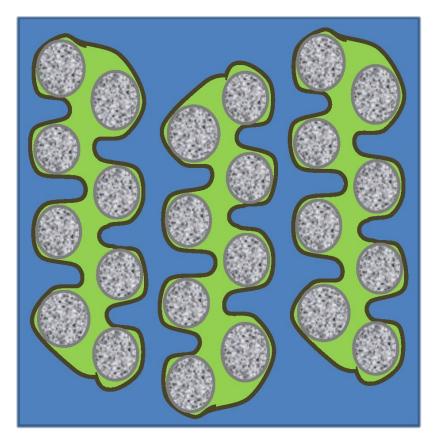
FY 2015 - present

- 9 funded projects
 - 2 shellfish beds
 - 2 tidal vegetation
 - 6 riverine
 - 1 SAV
- 5 endorsements
 - 2 shellfish beds
 - 2 tidal vegetation
 - 2 riverine
 - 1 SAV

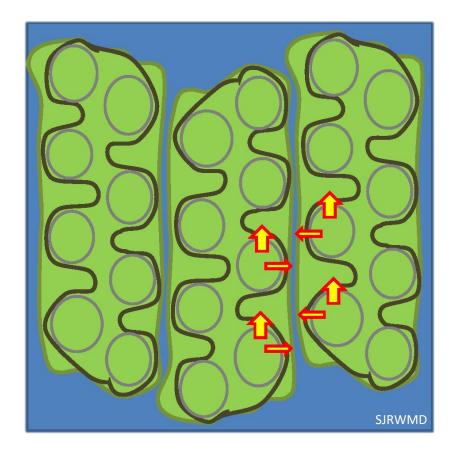


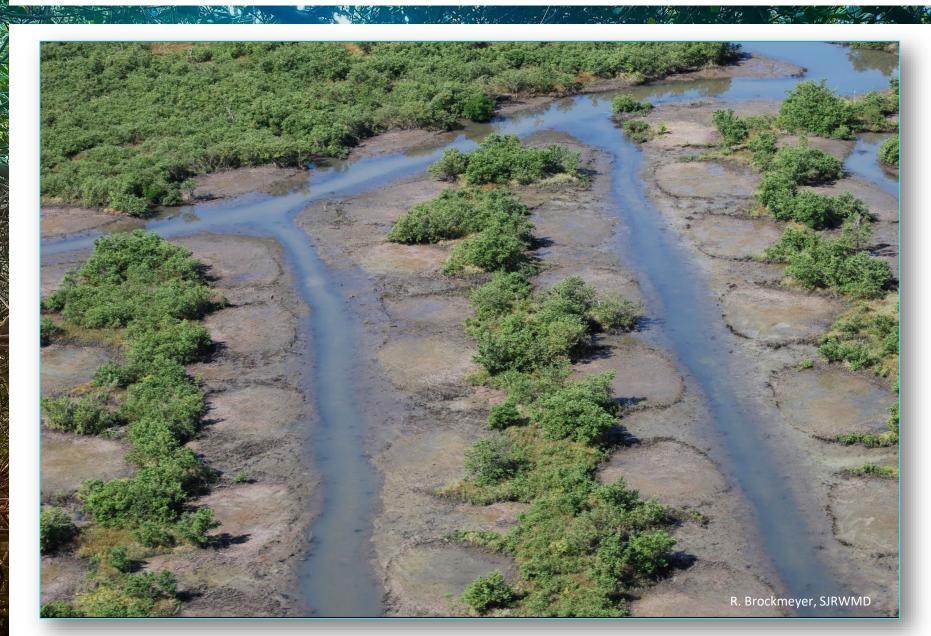
Oyster Reef Restoration in Back Sound

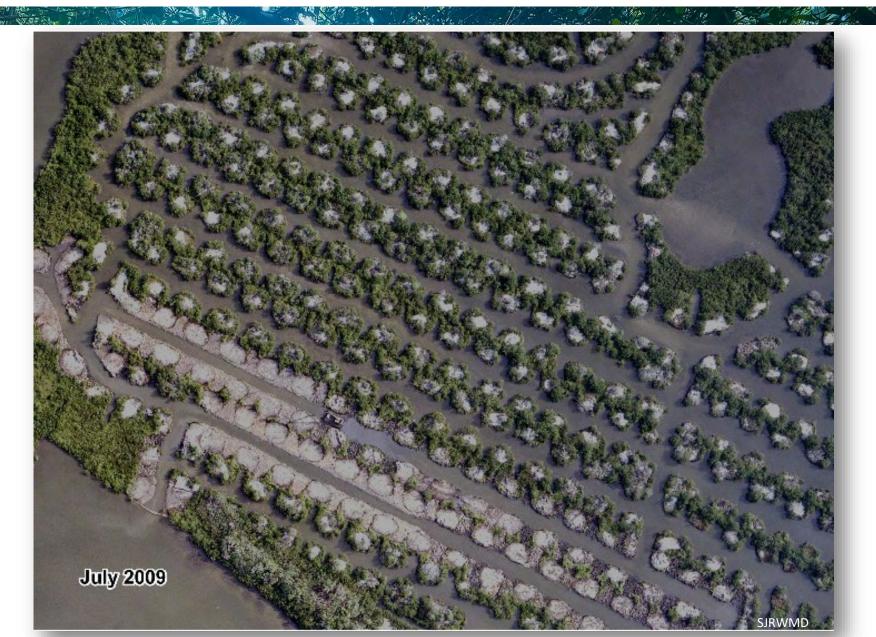
- Rachel Carson Reserve, NC
- ECU, NOAA, NCCF, USFWS
- Carrot Island eroding 1-2 m/yr
- 0.11 acres of oyster reef
- Protect 3 acres salt marsh



Dragline Ditch Restoration


- Northeast Florida
- FWC, SJRWMD, USFWS
- ~625 acres addressed
- 250 new acres
- 50 lbs of fish/acre/yr
- 31,250 lbs fish/yr

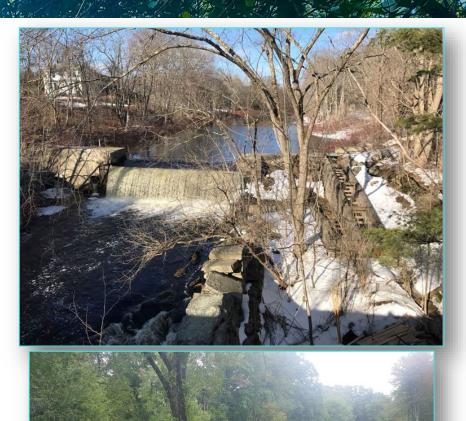

AN AN



<u>Sheepscot River</u> Restoration

- Whitefield & Alna, ME
- Atlantic Salmon
 Federation
- Coopers Mill Dam
- Head Tide Dam
- Built early 1800's
- Atlantic salmon Critical Habitat
- Dams greatest threat to continued existence

Photos in this section courtesy of ASF



<u>Sheepscot River</u> Restoration

- Removed Coopers Mill
 Dam
- Partially removing Head Tide Dam
- Reconnect 71 river miles

<u>Sheepscot River</u> Restoration

- Hydrants installed for fire protection
- Preserve certain historical and recreational features

Conservation

<u>Moorings</u>

- Coecles Harbor, NY
- NY DEC
- Eelgrass in decline across NY state
- Most extensive eelgrass in NY state
- Traditional moorings cause 'haloing'

Coecles Harbor

Replacing traditional moorings with conservation moorings **Restores and** reconnects SAV, then protects for future

Questions?

Lisa Havel Atlantic Coastal Fish Habitat Partnership Coordinator <u>Ihavel@asmfc.org</u> (703) 842-0740

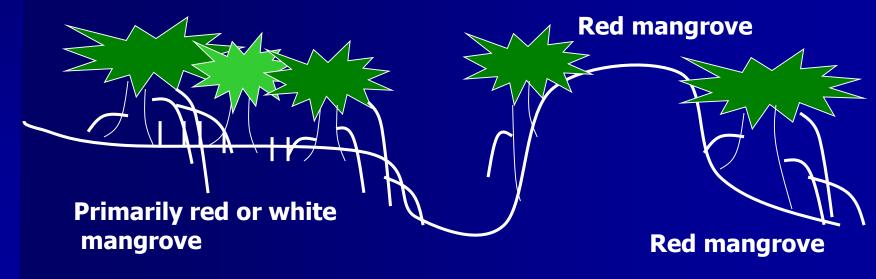
Habitat Restoration in Northeast Florida

Jeff Beal Marine/Estuarine Subsection

Restoring "Old Florida"

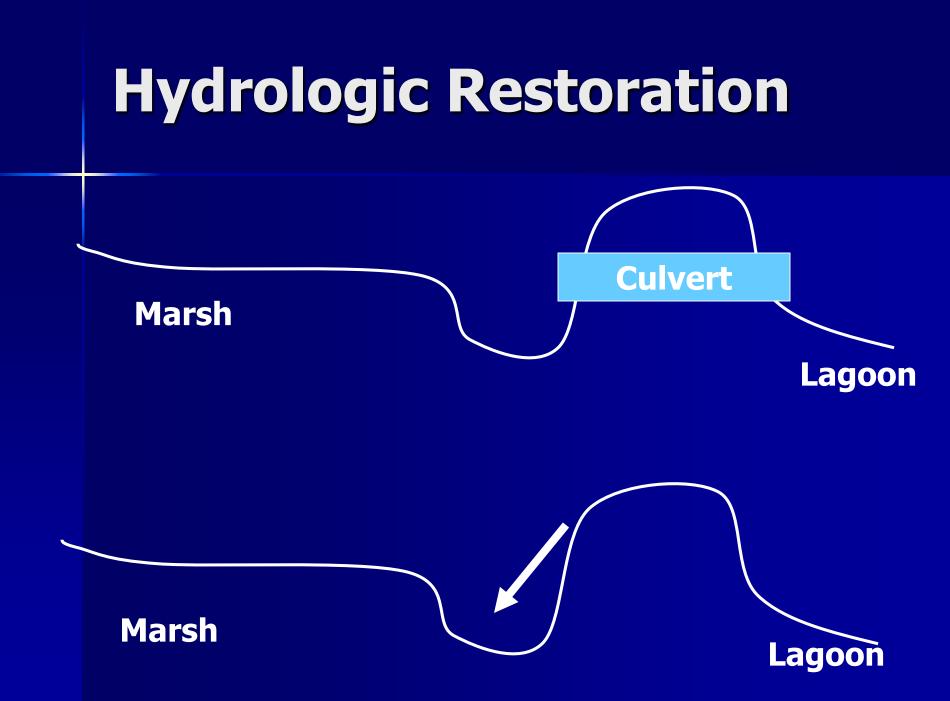
©2006 M. Plonsky

Impounding IRL marshes


MHW

Historic IRL mangrove marsh

White mangrove


Black mangrove/Salicornia spp./ Batis maritima

Impounded IRL mangrove marsh

Typical Impounded IRL marsh

Water Level/Quality Manipulation

Ecological Effects of Reconnection

Open versus Rotational Impoundment Management (RIM)

Native vegetation recruitment

Studies showed increase of fish/decapod species to 107

94% of individuals were 13 resident species (46% of biomass)

6% of individuals were 94 transient species (54% of biomass)

99.5% of transient species biomass is commercially important (\$24K/ha)

1500 juvenile snook in 3-hr culvert trap set

727.520.8181 www.aerophoto.com

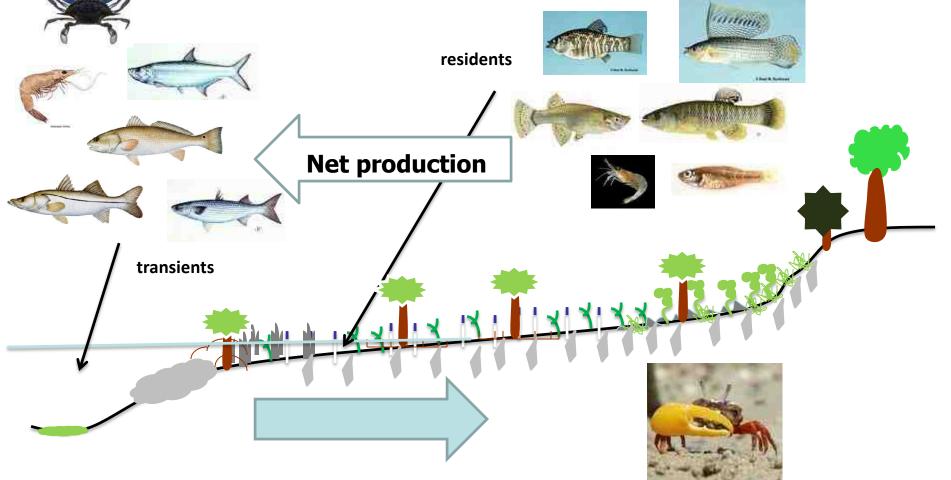
North Peninsula

Image # 100106 2113 Date 01.06.10

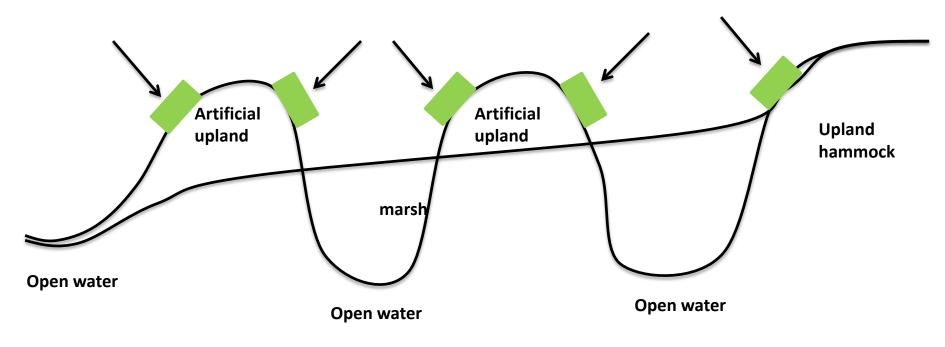
Shoreline Stabilization Demonstration Are

Rip-rap with native plants/oysters

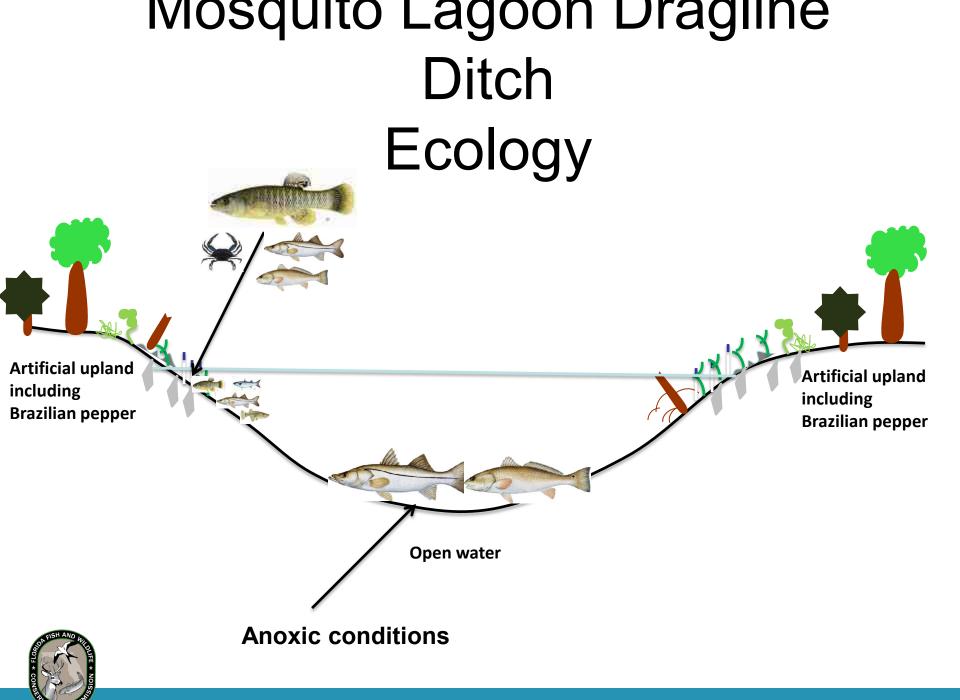
Seawall Retrofits

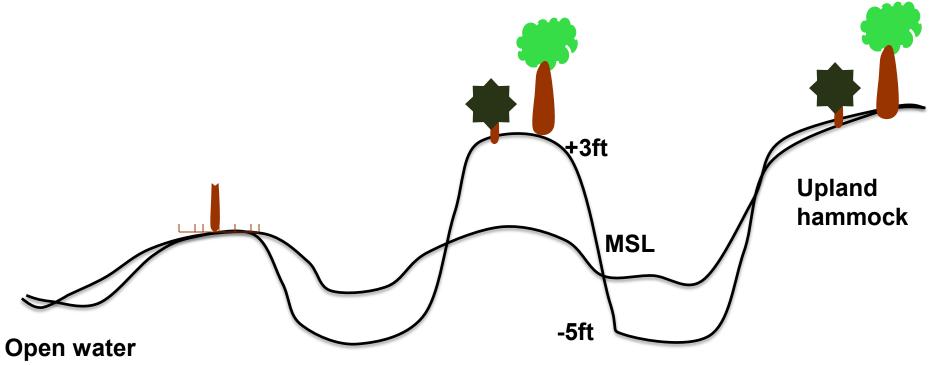


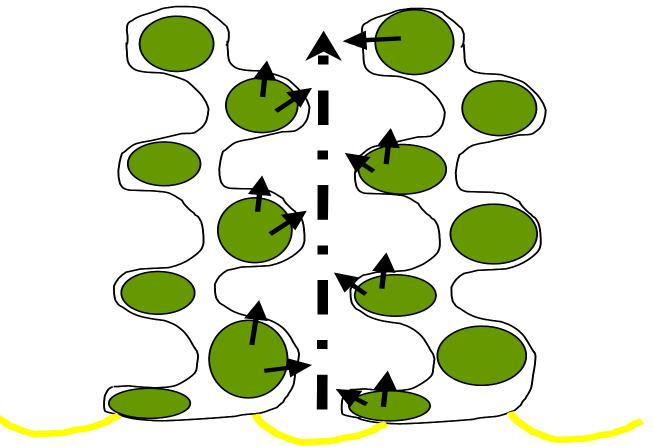
Pristine wetland


Mosquito Lagoon Natural Wetland Ecology

Mosquito Lagoon Dragline Ditching


Wetlands?



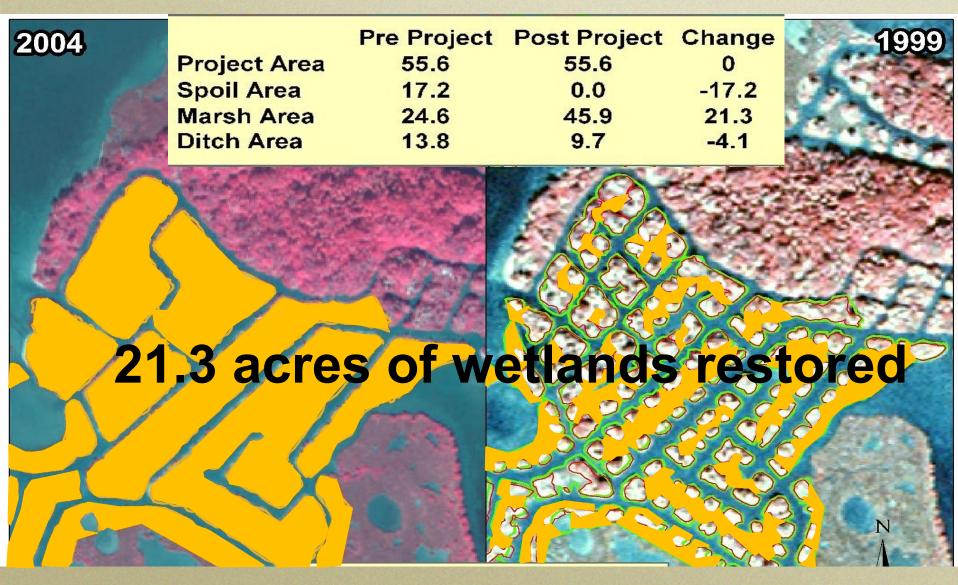


Mosquito Lagoon Wetland Restoration

Dragline Ditch Restoration Technique

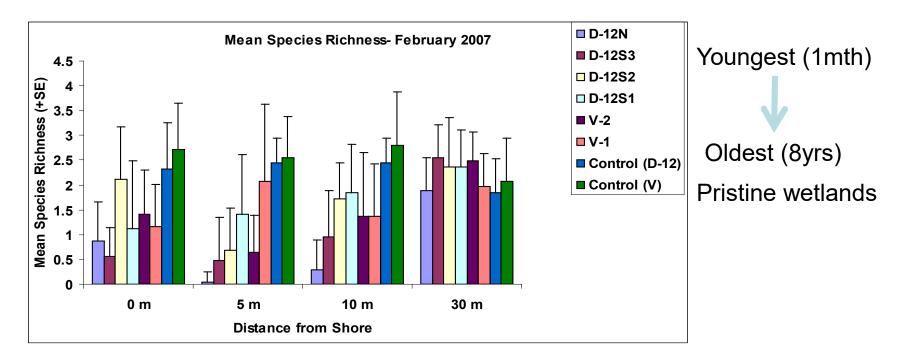
Spoil piles Turbidity Screen Excavator Path Direction of Spoil Dispersal

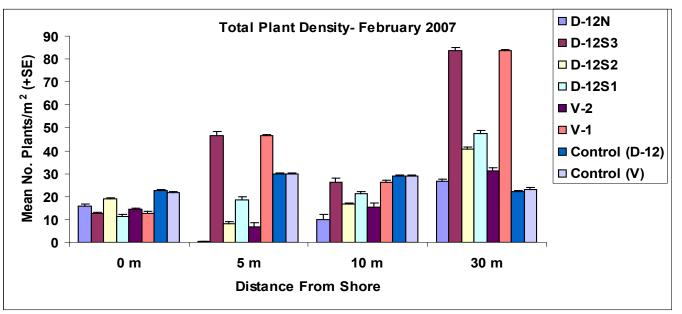
Immediate post-restoration


Dragline ditch

2yrs post-restoration

South States and States



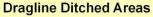


45.9 acres of wetlands

24.6 acres of wetlands

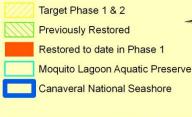
Donnelly, 2009

~\$4500per acre to restore


Provides 50lbs of fish biomass per acre annually to adjacent waters stevens et al. 2007 (600 restored acres produce 15tons annually)

Provides \$13,400 per acre in coastal storm protection Costanza 2008 (600 restored acres provide \$8,040,000 protection) Mosquito Lagoon Dragline Ditched Wetlands on Public Lands Dragline Ditch Restoration

Restoration has addressed approximately 625 acres in Volusia County


National Coastal Wetland Conservation Grants Program (USFWS) through FWC is funding the restoration

Phase 2 addresses an additional 93 acres in Flagler County

Cilometers

3

Bottle Island 2017 9yrs post-restoration

Write a description for your map.

Bottle Island
 done 2008

Feature 1

A N

500 ft

7 done 2008

Bottle Island

Google Earth

Matanzas Inlet

Write a description for your map.

Legend

Rattlesnake Island

Rattlesnake Island

A1A

٠

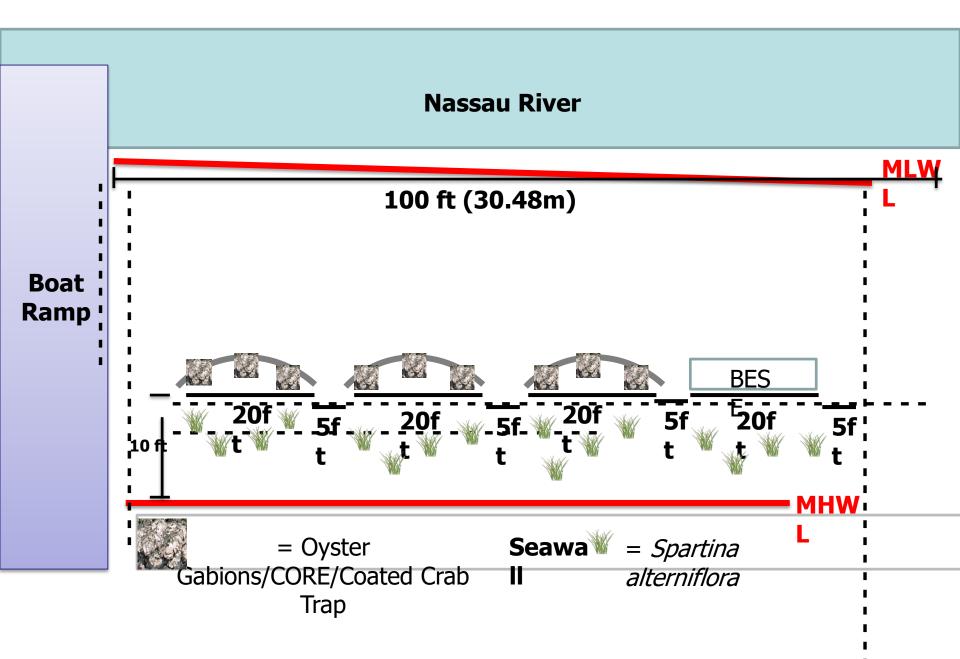
Google Earth

5

Inage ©2019 TerraMetrics ©2018 & gogle Data SIO,190A.A., U.S. Navy, NGA, GEBCO

2 mi

Goffinsville Park LS Project-Nassau River

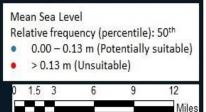


200ft successfully planted

Other areas need more substantial

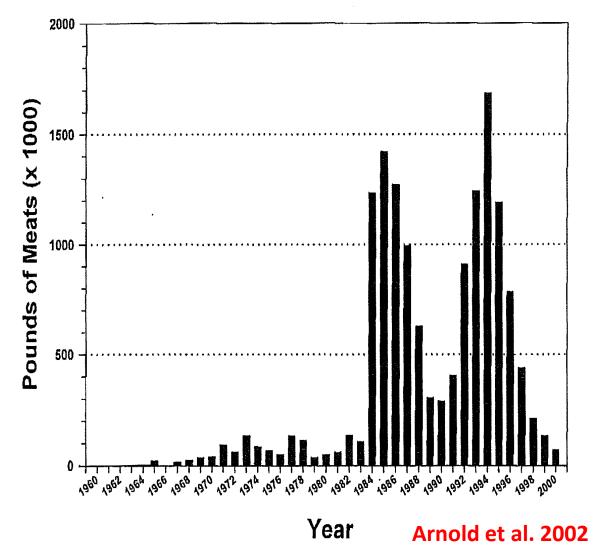
Goffansville Oyster Techniques

Shoreline Characterization



Brevard County Shoreline Assessment: **Completed Area**

soures: Ead, blojtylojtyja, Arožýs, Edrůstar Osographika, CHESUAin 130 A. USOS, AEX, Ostmapping, Asrogidi, 191, 197, sviastopo, and th 13 - Community, Eath 127 E. Diljoura, klapny India, O OpenStredika Unduan, Isunay


14

Miles

IRL Hard Clam Harvest Landings 1960-2000

Hard Clam Restoration

COASTAL ONSERVATION ASSOCIATION FLORIDA

- Survey extant population
- Collect resilient brood stock
- Assess physiology/genetics
- Culture and outplant
- Fate track

HARBOR BRANCH

FLORIDA ATLANTIC UNIVERSITY

Atlantic Coastal Fish Habitat Partnership May 2019

Operations Budget Report

of the same of the same state of the same same and the same state of

January-December 2019

Source	Grant Amount
NFHP FY18	\$66,125
MSCG FY19	\$10,000
Wallop-Breaux FY19	\$27,895
NOAA mapping projects	\$16,000
TOTAL	\$120,020

January-December 2020

10 B	Source	Grant Amount
	NFHP FY19	\$65,565
	MSCG FY20	\$25,000
	Wallop-Breaux FY20	\$28,680
-	Beyond the Pond	???
	TOTAL	\$119,275

* ACFHP RepYourWaters fishing apparel generating \$250-\$500 per year

Atlantic Coastal Fish Habitat Partnership May 2019

Operations Budget Report

January-December 2020

Source	Budget Categories
NFHP Cooperative Agreement	Salary + Fringe + 1 SC Travel
Multistate Conservation Grant	Salary + Fringe + Angler Engagement Workshop
Wallop-Breaux/Sportfish Restoration Grant	Salary + Fringe + 1 SC Travel
RepYourWaters ACFHP account	Printing/Outreach/Schwag